Составной транзистор типовые схемы. Особенности работы и схема транзистора дарлингтона. Примеры применения составного транзистора

Здравствуйте уважаемые читатели. Существует много схем, где с большим успехом используются замечательные мощные составные транзисторы КТ827 и естественно иногда возникает необходимость в их замене. Кода под рукой данных транзисторов не обнаруживается, то начинаем задумываться об их возможных аналогах.

Полных аналогов среди изделий иностранного производства я не нашел, хотя в интернете есть много предложений и утверждений о замене этих транзисторов на TIP142. Но у этих транзисторов максимальный ток коллектора равен 10А, у 827 он равен 20А, хотя мощности у них одинаковые и равны 125Вт. У 827 максимальное напряжение насыщения коллектор – эмиттер равно два вольта, у TIP142 – 3В, а это значит, что в импульсном режиме, когда транзистор будет находиться в насыщении, при токе коллектора 10А на нашем транзисторе будет выделиться мощность 20Вт, а на буржуйском – 30Вт, поэтому придется увеличивать размеры радиатора.

Хорошей заменой может быть транзистор КТ8105А, данные смотрим в табличке. При токе коллектора 10А напряжение насыщения у данного транзистора не более 2В. Это хорошо.

При неимении все этих замен я всегда собираю приблизительный аналог на дискретных элементах. Схемы транзисторов и их вид приведены на фото 1.

Собираю обычно навесным монтажом, один из возможных вариантов показан на фото 2.

В зависимости от нужных параметров составного транзистора можно подобрать транзисторы для замены. На схеме указаны диоды Д223А, я обычно применяю КД521 или КД522.

На фото 3 собранный составной транзистор работает на нагрузку при температуре 90 градусов. Ток через транзистор в данном случае равен 4А, а падение напряжения на нем 5 вольт, что соответствует выделяемой тепловой мощности 20Вт. Обычно такую процедуру я устраиваю полупроводникам в течении двух, трех часов. Для кремния это совсем не страшно. Конечно для работы такого транзистора на данном радиаторе внутри корпуса устройства потребуется дополнительный обдув.

Для выбора транзисторов привожу таблицу с параметрами.

Дарлингтона), часто являются составным элементов радиолюбительских конструкций. Как известно, при таком включении коэффициент усиления по току, как правило, увеличивается в десятки раз. Однако добиться значительного запаса работоспособности по напряжению, воздействующему на каскад, удается не всегда. Усилители по , состоящие из двух биполярных транзисторов (Рис. 1.23), часто выходят из строя при воздействии импульсного напряжения, даже если оно не превышает значение электрических параметров, указанных в справочной литературе.

С этим неприятным эффектом можно бороться разными способами. Одним из них - самым простым - является наличие в паре транзистора с большим (в несколько раз) запасом ресурса по напряжению коллектор-эмиттер. Относительно высокая стоимость таких «высоковольтных» транзисторов приводит к увеличению себестоимости конструкции. Можно, конечно, приобрести специальные составные кремниевые в одном корпусе, например: КТ712, КТ829, КТ834, КТ848, КТ852, КТ853, КТ894, КТ897, КТ898, КТ973 и др. Этот список включает мощные и средней мощности приборы, разработанные практически для всего спектра радиотехнических устройств. А можно воспользоваться классической - с двумя параллельно включенными полевыми транзисторами типа КП501В - или использовать приборы КП501А…В, КП540 и другие с аналогичными электрическими характеристиками (Рис. 1.24). При этом вывод затвора подключают вместо базы VT1, а вывод истока - вместо эмиттера VT2, вывод стока - вместо объединенных коллекторов VT1, VT2.

Рис. 1.24. Замена полевыми транзисторами составного транзистора по

После такой несложной доработки, т.е. замены узлов в электрических схемах, универсального применения, тока на транзисторах VT1, VT2 не выходит из строя даже при 10-кратной и более перегрузке по напряжению. Причем ограничительного резистора в цепи затвора VT1 также увеличивается в несколько раз. Это приводит к тому, что имеют более высокое входное и, как следствие, выдерживают перегрузки при импульсном характере управления данным электронным узлом.

Коэффициент усиления по току полученного каскада не менее 50. Увеличивается прямо пропорционально увеличению напряжения питания узла.

VT1, VT2. При отсутствии дискретных транзисторов типа КП501А…В можно без потери качества работы устройства использовать микросхему 1014КТ1В. В отличие, например, от 1014КТ1А и 1014КТ1Б эта выдерживает более высокие перегрузки по приложенному напряжению импульсного характера - до 200 В постоянного напряжения. Цоколевка включения транзисторов микросхемы 1014КТ1А…1014К1В показана на Рис. 1.25.

Так же как и в предыдущем варианте (Рис. 1.24), включают параллельно.

Цоколевка полевых транзисторов в микросхеме 1014КТ1А…В

Автор опробовал десятки электронных узлов, включенных по . Такие узлы используются в радиолюбительских конструкциях в качестве токовых ключей аналогично составным транзисторам, включенным по . К перечисленным выше особенностям полевых транзисторов можно добавить их энергоэкономичность, так как в закрытом состоянии из-за высокого входного они практически не потребляют тока. Что касается стоимости таких транзисторов, то сегодня она практически такая же, как и стоимость среднемощных транзисторов типа , (и аналогичным им), которые принято использовать в качестве усилителя тока для управления устройствами нагрузки.


При проектировании радиоэлектронных схем часто бывают ситуации, когда желательно иметь транзисторы с параметрами лучше тех, которые предлагают производители радиоэлементов. В некоторых случаях нам может потребоваться больший коэффициент усиления по току h 21 , в других большее значение входного сопротивления h 11 , а в третьих более низкое значение выходной проводимости h 22 . Для решения перечисленных проблем отлично подходит вариант использования электронного компонента о котором мы поговорим ниже.

Устройство составного транзистора и обозначение на схемах

Приведенная чуть ниже схема эквивалентна одиночному n-p-n полупроводнику. В данной схеме ток эмиттера VT1 является током базы VT2. Коллекторный ток составного транзистора определяется в основном током VT2.

Это два отдельных биполярных транзистора на выполненные на одном кристалле и в одном корпусе. Там же и размещается нагрузочный резистор в цепи эмиттера первого биполярного транзистора. У транзистора Дарлингтона те же выводы, что и у стандартного биполярного транзистора – база, коллектор и эмиттер.

Как видим из рисунка выше, стандартный составной транзистор это комбинация из нескольких транзисторов. В зависимости от уровня сложности и рассеиваемой мощности в составе транзистора Дарлингтона может быть и более двух.

Основное плюсом составного транзистора является значительно больший коэффициент усиления по току h 21 , который можно приблизительно вычислить по формуле как произведение параметров h 21 входящих в схему транзисторов.

h 21 =h 21vt1 × h21vt2 (1)

Так если коэффициент усиления первого равен 120, а второго 60 то общий коэффициент усиления схемы Дарлингтона равен произведению этих величин - 7200.

Но учитывайте, что параметр h21 достаточно сильно зависит от коллекторного тока. В случае когда базовый ток транзистора VT2 достаточно низок, коллекторного VT1 может не хватить для обеспечения нужного значения коэффициента усиления по току h 21 . Тогда увеличением h21 и, соответственно, снижением тока базы составного транзистора можно добиться роста тока коллектора VT1. Для этого между эмиттером и базой VT2 включают дополнительное сопротивление, как показано на схеме ниже.

Вычислим элементы для схемы Дарлингтона, собранной, например на биполярных транзисторах BC846A, ток VT2 равен 1 мА. Тогда его ток базы определим из выражения:

i kvt1 =i бvt2 =i kvt2 / h 21vt2 = 1×10 -3 A / 200 =5×10 -6 A

При таком малом токе в 5 мкА коэффициент h 21 резко снижается и общий коэффициент может оказаться на порядок меньше расчетного. Увеличив ток коллектора первого транзистора при помощи добавочного резистора можно значительно выиграть в значении общего параметра h 21 . Так как напряжение на базе является константой (для типового кремниевого трех выводного полупроводника u бэ = 0,7 В), то сопротивление можно рассчитать по :

R = u бэvt2 / i эvt1 - i бvt2 = 0.7 Вольта / 0.1 mA - 0.005mA = 7кОм

При этом мы можем рассчитывать на коэффициент усиления по току до 40000. Именно по такой схеме построены многие супербетта транзисторы.

Добавив дегтя упомяну, что данная схема Дарлингтона обладает таким существенным недочетом, как повышенное напряжение U кэ. Если в обычных транзисторах напряжение составляет 0,2 В, то в составном транзисторе оно возрастает до уровня 0,9 В. Это связано с необходимостью открывать VT1, а для этого на его базу необходимо подать напряжение уровнем до 0,7 В (если при изготовлении полупроводника использовался кремний).

В результате чтоб исключить упомянутый недостаток, в классическую схему внесли незначительные изменения и получили комплементарный транзистор Дарлингтона. Такой составной транзистор составлен из биполярных приборов, но уже разной проводимости: p-n-p и n-p-n.

Российские, да и многие зарубежные радиолюбители такое соединение называют схемой Шиклаи, хотя эта схема называлась парадоксной парой.

Типичными минусом составных транзисторов, ограничивающими их применение является невысокое быстродействие, поэтому они нашли широкое использование только в низкочастотных схемах. Они прекрасно работают в выходных каскадах мощных УНЧ, в схемах управления двигателями и устройствами автоматики, в схемах зажигания автомобилей.

На принципиальных схемах составной транзистор обозначается как обычный биполярный. Хотя, редко, но используется такое условно графическое изображение составного транзистора на схеме.

Одной из самых распространенных считается интегральная сборка L293D - это четыре токовых усилителя в одном корпусе. Кроме того микросборку L293 можно определить как четыре транзисторных электронных ключа.

Выходной каскад микросхемы состоит из комбинации схем Дарлингтона и Шиклаи.

Кроме того уважение у радиолюбителей получили и специализированные микросборки на основе схемы Дарлингтона. Например . Эта интегральная схема по своей сути является матрицей из семи транзисторов Дарлингтона. Такие универсальные сборки отлично украшают радиолюбительские схемы и делают их более функциональными.

Микросхема является семи канальным коммутатор мощных нагрузок на базе составных транзисторов Дарлингтона с открытым коллектором. Коммутаторы содержат защитные диоды, что позволяет коммутировать индуктивные нагрузки, например обмотку реле. Коммутатор ULN2004 необходим при сопряжения мощных нагрузок с микросхемами КМОП-логики.

Зарядный ток через батарею в зависимости от напряжения на ней (прикладываемого к Б-Э переходу VT1), регулируется транзистором VT1, коллекторным напряжением которого управляется индикатор заряда на светодиоде (по мере зарядки ток заряда уменьшается и светодиод постепенно гаснет) и мощный составной транзистор, содержащий VT2, VT3, VT4.


Сигнал требующий усиления через предварительный УНЧ подается на предварительный дифферециальный усилительный каскад построенный на составных VT1 и VT2. Использование дифференциальной схемы в усилительном каскаде, снижает шумовые эффекты и обеспечивает работу отрицательной обратной связи. Напряжение ОС поступает на базу транзистора VT2 с выхода усилителя мощности. ОС по постоянному току реализуется через резистор R6.

В момент включения генератора конденсатор С1 начинает заряжаться, затем открывается стабилитрон и сработает реле К1. Конденсатор начинает разряжаться через резистор и составной транзистор. Через небольшой промежуток времени реле выключается и начинается новый цикл работы генератора.

Обозначение составного транзистора, выполненного из двух отдельных транзисторов, соединенных по схеме Дарлингтона, указано на рисунке №1. Первый из упомянутых транзисторов включен по схеме эмиттерного повторителя, сигнал с эмиттера первого транзистора поступает на базу второго транзистора. Достоинством этой схемы является исключительно высокий коэффициент усиления. Общий коэффициент усиления по току р для этой схемы равен произведению коэффициентов усиления по току отдельных транзисторов: р = ргр2 .

Например, если входной транзистор пары Дарлингтона имеет коэффициент усиления, равный 120, а коэффициент усиления второго транзистора равен 50, то общее р составляет 6000. В действительности усиление будет даже несколько большим, так как общий коллекторный ток составного транзистора равен сумме коллекторных токов пары входящих в него транзисторов.
Полная схема составного транзистора показана на рисунке №2. В этой схеме резисторы R 1 и R 2 составляют делитель напряжения, создающий смещение на базе первого транзистора. Резистор Rн, подключенный к эмиттеру составного транзистора, образует выходную цепь. Такой прибор широко применяется на практике, особенно в тех случаях, когда требуется большой коэффициент усиления по току. Схема имеет высокую чувствительность к входному сигналу и отличается высоким уровнем выходного коллекторного тока, что позволяет использовать этот ток в качестве управляющего (особенно при низком напряжении питания). Применение схемы Дарлингтона способствует уменьшению числа компонентов в схемах.

Схему Дарлингтона используют в усилителях низкой частоты, в генераторах и переключающих устройствах. Выходное сопротивление схемы Дарлингтона во много раз ниже входного. В этом смысле ее характеристики подобны характеристикам понижающего трансформатора. Однако в отличие от транформатора схема Дарлингтона позволяет получить большое усиление по мощности. Входное сопротивление схемы примерно равно $²Rn, а ее выходное сопротивление обычно меньше Rн. В переключающих устройствах схема Дарлингтона применяется в области частот до 25 кГц.

Литература: Матью Мэндл. 200 ИЗБРАННЫХ СХЕМ ЭЛЕКТРОНИКИ. Редакция литературы по информатике и электронике. © 1978 Prentice-Hall, Inc. © перевод на русский язык, «Мир», 1985, 1980

  • Похожие статьи

Войти с помощью:

Случайные статьи

  • 08.10.2014

    Стереофонический регулятор громкости, баланса и тембра на ТСА5550 имеет следующие параметры: Малые нелинейные искажения не более 0,1% Напряжение питания 10-16В (12В номинальное) Ток потребления 15…30мА Входное напряжение 0,5В (коэффициент усиления при напряжении питания 12В единица) Диапазон регулировки тембра -14…+14дБ Диапазон регулировки баланса 3дБ Разница между каналами 45дБ Отношение сигнал шум …

Составной транзистор Дарлингтона компонуется из пары стандартны транзисторов, объединённых кристаллом и общим защитным покрытием. Обычно на чертежах для отметки положения подобного транзистора не применяют никаких специальных символов, только тот, которым отмечают транзисторы стандартного типа.

К эмиттерной цепи одного из элементов присоединён нагрузочный резистор. Выводы транзистора Дарлингтона аналогичны биполярному полупроводниковому триоду:

  • база;
  • эмиттер;
  • коллектор.

Помимо общепринятого варианта составного транзистора существует несколько его разновидностей.

Пара Шиклаи и каскодная схема

Другое название составного полупроводникового триода – пара Дарлингтона. Кроме неё существует также пара Шиклаи. Это сходная комбинация диады основных элементов, которая отличается тем, что включает в себя разнотипные транзисторы.

Что до каскодной схемы, то это также вариант составного транзистора, в котором один полупроводниковый триод включается по схеме с ОЭ, а другой по схеме с ОБ. Такое устройство аналогично простому транзистору, который включён в схему с ОЭ, но обладающему более хорошими показателями по частоте, высоким входным сопротивлением и большим линейным диапазоном с меньшими искажениями транслируемого сигнала.

Достоинства и недостатки составных транзисторов

Мощность и сложность транзистора Дарлингтона может регулироваться через увеличение количества включённых в него биполярных транзисторов. Существует также , который включает в себя биполярный и , используется в сфере высоковольтной электроники.

Главным достоинством составных транзисторов считается их способность давать большой коэффициент усиления по току. Дело в том, что, если коэффициент усиления у каждого из двух транзисторов будет по 60, то при их совместной работе в составном транзисторе общий коэффициент усиления будет равен произведению коэффициентов входящих в его состав транзисторов (в данном случае — 3600). Как результат — для открытия транзистора Дарлингтона потребуется довольно небольшой ток базы.

Недостатком составного транзистора считается их низкая скорость работы, что делает их пригодными для использования только в схемах работающих на низких частотах. Зачастую составные транзисторы фигурируют как компонент выходных каскадов мощных низкочастотных усилителей.

Особенности работы устройства

У составных транзисторов постепенное уменьшение напряжения вдоль проводника на переходе база-эмиттер вдвое превышает стандартное. Уровень уменьшения напряжения на открытом транзисторе примерно равен тому падению напряжения, которое имеет диод.

По данному показателю составной транзистор сходен с понижающим трансформатором. Но относительно характеристик трансформатора транзистор Дарлингтона обладает гораздо большим усилением по мощности. Подобные транзисторы могут обслуживать работу переключателей частотой до 25 Гц.

Система промышленного выпуска составных транзисторов налажена таким образом, что модуль полностью укомплектован и оснащён эмиттерным резистором.

Как проверить транзистор Дарлингтона

Самый простой способ проверки составного транзистора заключается в следующем:

  • Эмиттер подсоединяется к «минусу» источника питания;
  • Коллектор подсоединяется к одному из выводов лампочки, второй её вывод перенаправляется на «плюс» источника питания;
  • Посредством резистора к базе передаётся плюсовое напряжение, лампочка светится;
  • Посредством резистора к базе передаётся минусовое напряжение, лампочка не светится.

Если всё получилось так, как описано, то транзистор исправен.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.