Защита от перенапряжения: обзор доступных вариантов и эффективных устройств (90 фото). Защита от скачков напряжения бытовых электрических сетей, разновидности защитных устройств и способы их установки Устройство защиты от атмосферных перенапряжений

Современные бытовые приборы оснащены крайне чувствительной электроникой, поэтому перепады напряжения могут легко вывести их из строя. Полностью устранить перепады невозможно, защиту от перенапряжений сети обеспечивают специальные устройства, выбор которых огромен.

Необходимо разобраться с причинами появления перепадов напряжения, последствиями сбоев, уяснить принцип работы защитных устройств.

Природа перепадов напряжения

Перепады представляют собой непродолжительные изменения амплитуды напряжения, которое затем восстанавливается до значений, близких к изначальному. Продолжительность такого изменения составляет доли секунды, однако его достаточно, чтобы произошел сбой в работе.

Выделяют следующие причины возникновения перепадов:

  • Грозовые разряды, дающие высокое перенапряжение, могут стать причиной пожара. Многоэтажные дома в плане защиты от подобных явлений защищены благодаря поставщикам электроэнергии. В частном доме систему защиты необходимо будет продумать самостоятельно, выполнив все работы своими руками или вызвав специалистов.
  • Скачки, вызванные коммутационными процессами при запуске/отключении потребителей с большой мощностью.
  • Электростатическая индукция.
  • Подключение мощного оборудования определенного типа (сварочный аппарат, электродвигатель коллекторного типа).

Перенапряжение – это ненормальный режим работы в электрических сетях, который заключается в чрезмерном увеличении значения напряжения выше допустимых значений для участка электрической сети, который является опасным для элементов оборудования данного участка электрической сети.

Изоляция оборудования электроустановок рассчитана на нормальную работу при определенных значениях напряжения, в случае наличия перенапряжения, изоляция приходит в негодность, что приводит к повреждению оборудования и представляет опасность для обслуживающего персонала или людей, которые находятся в непосредственной близости к элементам электрических сетей.

Перенапряжения могут быть двух видов – природными (внешними) и коммутационными (внутренними). Природные перенапряжения – это явление атмосферного электричества. Коммутационные перенапряжения возникают непосредственно в электрических сетях, причинами их проявления могут быть большие перепады нагрузки на линиях электропередач, феррорезонансные явления, послеаварийные режимы работы электрических сетей.

Способы защиты от перенапряжений

В электроустановках для защиты оборудования от возможных перенапряжений применяют такое защитное оборудование, как и ограничители перенапряжения нелинейные (ОПН) .

Основным конструктивным элементом данного защитного оборудования является элемент с нелинейными характеристиками. Характерная особенность данных элементов заключается в том, что они изменяют свое сопротивление в зависимости от приложенного к ним значения напряжения. Рассмотрим вкратце принцип работы данных защитных элементов.

Разрядник или ограничитель перенапряжения присоединяется к шине рабочего напряжения и к контуру заземления электроустановки. В нормальном режиме, то есть, когда сетевое напряжение находится в пределах допустимых значений, разрядник (ОПН) имеет очень большое сопротивление, и он не проводит напряжение.

В случае возникновения перенапряжения на участке электрической сети сопротивление разрядника (ОПН) резко падает, и данный защитный элемент проводит напряжение, способствуя утечке возникшего скачка напряжения в заземляющий контур. То есть на момент перенапряжения разрядник (ОПН) осуществляет электрическое соединение провода с землей.

Разрядники и ОПН устанавливаются для защиты элементов оборудования на территории распределительных устройств электроустановок, а также в начале и в конце линий электропередач напряжением 6 и 10 кВ, которые не оборудованы грозозащитным тросом.

Для защиты от природных (внешних) перенапряжений на металлических и железобетонных конструкциях открытых распределительных устройств устанавливают стержневые молниеотводы . На высоковольтных линиях напряжением 35 кВ и выше применяют грозозащитный трос (тросовый молниеотвод), который располагается в верхней части опор линий электропередач на всей их протяженности, соединяясь с металлическими элементами линейных порталов открытых распределительных устройств подстанций. Молниеотводы притягивают атмосферные заряды на себя, тем самым предупреждая их попадания на токоведущие части электрооборудования электроустановок.

Для обеспечения надежной защиты оборудования электроустановок от возможных перенапряжений, разрядники и ограничители перенапряжений, как и все элементы оборудования, должны проходить периодические ремонты и испытания. Также необходимо в соответствии с установленной периодичностью проверять сопротивление и техническое состояние заземляющих контуров распределительных устройств.

Перенапряжения в низковольтных сетях

Явление перенапряжений также характерно и для низковольтных сетей напряжением 220/380 В. Перенапряжения в низковольтных сетях приводят к выходу из строя не только оборудования данных электрических сетей, но и электроприборов, которые включены в сеть.

Для защиты от перенапряжений в домашней электропроводке используют реле напряжения или стабилизаторы напряжения, источники бесперебойного питания, в которых предусмотрена соответствующая функция. Также существуют модульные устройства защиты от импульсных перенапряжений, предназначенные для установки в домашний распределительный щиток.

В низковольтных распределительных устройствах предприятий, электроустановок, ЛЭП для защиты от перенапряжений применяют специальные ограничители перенапряжений по принципу работы схожие с высоковольтными ОПН.

Rating 0.00 (0 Votes)

Обычно в любых электрических сетях напряжение находится в пределах, определяемых техническими нормативами, но иногда оно отклоняется от допустимых значений. Предельно допустимое напряжение находится в пределах ±10 % от номинального значения напряжения, т. е. для однофазной сети в диапазоне 198-242 В, а для трехфазной - 342-418 В. Отклонения от указанных значений называются перенапряжениями. Перенапряжения имеют различную природу и в зависимости от этого отличаются длительностью и величиной. Длительные перенапряжения (свыше 0,01 с) обычно возникают из-за неисправности понижающего трансформатора на подстанции или обрыва нулевого провода в питающей сети.

Такие перенапряжения имеют сравнительно небольшие значения (от 230 В до величины междуфазного напряжения - 380 В), но действуют длительное время и представляют вполне реальную угрозу и для человека, и для оборудования. Длительное повышение напряжения может произойти и в случае неравномерного распределения нагрузок по фазам во внешней сети. Тогда возникает перекос фаз, при котором на самой загруженной фазе напряжение становится ниже, а на незагруженной - выше номинального. Кратковременные всплески напряжения могут произойти и в результате переключений в энергосети или во время включения мощных реактивных нагрузок.

Для надежной защиты домашней электропроводки от перенапряжений рекомендуется создание многоуровневой (по крайней мере, трехступенчатой) системы защиты из УЗИП разных классов. УЗИП класса В (тип 1) рассчитано на номинальный разрядный ток 30- 60 кА, УЗИП класса С (тип 2) - на ток 20-40 кА. УЗИП класса D (тип 3) на ток 5-10 кА. При создании многоступенчатой системы защиты от перенапряжений следует обеспечить соответствие мощности каждой ступени, т. е. максимальный ток, протекающий через них, не должен превышать их номинальных характеристик. Но в первую очередь необходимо создать эффективную систему заземления.

Мощные импульсные перенапряжения (с токами до 100 кА) могут возникать при воздействии грозовых разрядов. При этом напряжение может достигать десятков киловольт. Такие импульсы длятся в течение максимум сотни микросекунд, и защитные автоматы не успевают на них среагировать, так как самые современные типы автоматов имеют время срабатывания единицы миллисекунд, что может стать причиной пробоя и повреждения изоляции между фазой и нейтралью или между фазой и землей. Как правило, это не приводит к короткому замыканию и не нарушает работу сети, но в месте повреждения изоляции возникает небольшой ток утечки. И если он проходит между фазой и нейтралью, то не фиксируется УЗО и автоматами защиты, но зато приводит к повышенному нагреву изоляции и ускорению процесса ее старения. С течением времени сопротивление изоляции на этом участке уменьшается, а ток утечки возрастает.

Последствия воздействия этих негативных факторов на электронное оборудование и электропроводку могут быть фатальными, поэтому домашняя сеть требует комплексной защиты от перенапряжений с использованием различных типов устройств (УЗИП, ОП, PH и т. д.).

Возможность использования различных УЗИП для выполнения конкретных защитных функций определяется по техническим характеристикам, отраженным в маркировке прибора.

Уровень напряжения защиты U является важнейшим параметром, характеризующим УЗИП. Он определяет значение остаточного напряжения, появляющегося на выводах УЗИП вследствие прохождения разрядного тока. Для УЗИП 1-го класса U p не должен превышать 4 кВ, для устройств 2-го класса - 2,5 кВ, для 3-го класса УЗИП устанавливается U p не более 1,5 кВ - тот уровень микросекундных импульсных перенапряжений, который должна выдерживать бытовая техника.

Максимальный разрядный ток I max - величина импульса тока, которую должно выдержать УЗИП однократно, сохранив при этом работоспособность.

Номинальный разрядный ток 1 n - величина импульса тока, которую УЗИП должно выдержать многократно при условии его остывания до комнатной температуры в промежутке между импульсами.

Максимальное длительное рабочее напряжение U c - действующее значение напряжения переменного или постоянного тока, которое длительно подается на выводы УЗИП. Оно равно номинальному напряжению с учетом возможного завышения напряжения при различных нештатных режимах работы сети. Номинальный ток нагрузки I i (- максимальный длительный переменный (действующее значение) или постоянный ток, который может подаваться к нагрузке, защищаемой УЗИП. Данный параметр важен для УЗИП, подключаемых в сеть последовательно с защищаемым оборудованием. Так как большинство УЗИП подключаются параллельно цепи, то данный параметр у них не указывается.

При необходимости дополнительной защиты конкретных приборов используются устройства, выполненные в виде вставок и удлинителей, - сетевые фильтры. В их конструкцию включены варисторы, подавляющие импульсные скачки напряжения.

Это полупроводниковые резисторы, в работе которых используется эффект уменьшения сопротивления полупроводникового материала при увеличении приложенного напряжения, за счет чего они являются наиболее эффективным (и дешевым) средством защиты от импульсных напряжений любого вида. Варистор включается параллельно защищаемому оборудованию и при нормальной эксплуатации находится под действием рабочего напряжения защищаемого устройства. В рабочем режиме ток через варистор пренебрежимо мал, и он в этих условиях представляет собой изолятор. При возникновении импульса напряжения сопротивление варистора резко уменьшается до долей ома. В этом случае через него кратковременно может протекать ток, достигающий нескольких тысяч ампер. После гашения импульса напряжения он вновь приобретает очень большое сопротивление.

Выбор УЗИП производится в соответствии с принятой системой защиты. При этом обязательно учитываются технические характеристики устройств, которые должны быть приведены в каталоге и нанесены на лицевой части корпуса прибора.

При установке УЗИП необходимо, чтобы расстояние между соседними ступенями защиты было не менее 10 м по кабелю электропитания. Выполнение этого требования очень важно для правильной последовательности срабатывания защитных устройств. Первая ступень защиты класса В монтируется за пределами дома во входном щите.

УЗ-6/220, УЗ-18/380 предназначены для защиты сети от кратковременных (до 12 кВ) и длительных перенапряжений, вызванных коммутационными, индуктивными и грозовыми процессами. Устройства относятся к УЗИП 2-го и 3-го классов и выполнены на варисторах. Для надежной защиты от длительных перенапряжений, вызванных авариями в сети, прибор нужно подключать после УЗО и заземлять. Только при таком подключении создается ток утечки и обеспечивается срабатывание УЗО.

Устройство защиты от импульсных перенапряжений (УЗИП) предназначено для предотвращения возможных повреждений бытовой техники от мощных импульсных перенапряжений, вызванных авариями в питающей сети или грозовыми разрядами. Устройства такого типа могут называться ограничителями перенапряжений (ОП). Они, как правило, изготовлены на базе разрядников или варисторов и часто имеют индикаторные устройства, сигнализирующие о выходе их из строя. Обычно УЗИП на базе варисторов изготавливаются с креплением на DIN-рейку. Сгоревший варистор можно заменить простым извлечением модуля из корпуса УЗИП и установкой нового.

В зависимости от защищаемой зоны ограничители перенапряжений подразделяются на классы или типы. Приборы класса В (тип 1) защищают объекты от атмосферных и коммутационных перенапряжений, прошедших через разрядники класса А внешних сетей. Они устанавливаются на вводном устройстве дома и ограничивают величину перенапряжений до 4,0 кВ, защищая вводные счетчики и электрическое оборудование распределительного щита.

Ограничители класса С (тип 2) защищают электрооборудование от перенапряжений, прошедших через ограничители класса В, и ограничивают величину перенапряжения до 2,5 кВ. Они устанавливаются в распределительных щитках внутри дома или квартиры и осуществляют защиту автоматических и дифференциальных выключателей, внутренней проводки, контакторов, выключателей, розеток и др. Ограничители класса D (тип 3) являются защитой от перенапряжений, прошедших через приборы класса С, и ограничивают их величину до 13 кВ. Такие ограничители устанавливаются в распределительные коробки, розетки и могут встраиваться в само оборудование. Ограничители этого класса осуществляют защиту электрического оборудования с электронными приборами, а также переносных электрических устройств.

Ограничитель перенапряжений серии 0П-101 на основе варистора предназначен для защиты электрооборудования от импульсных перенапряжений, вызванных ударами молнии или коммутационными перенапряжениями. При возникновении скачка перенапряжения варисторы прибора переходят в проводящее состояние, ток возрастает на несколько порядков, достигая сотен и тысяч ампер и ограничивая при этом дальнейшее нарастание напряжения на выводах. После прохождения волны перенапряжения ограничитель возвращается в непроводящее состояние. Время срабатывания прибора составляет около 25 нс.

Ограничители перенапряжений серии 0П-101 бывают однофазными или трехфазными. Трехфазные устройства класса В устанавливаются на трехфазном вводе. Однофазные (класса D) используются для защиты отдельных потребителей или групп.

В распределительном щите внутри дома устанавливаются варисторные УЗИП класса С или D (тип 2 и 3). Недостатком УЗИП на базе варисторов является то, что после срабатывания оно нуждается в охлаждении, чтобы снова прийти в рабочее состояние. Это ухудшает защиту при многократных разрядах. Безусловно, использование УЗИП снижает вероятность выхода из строя оборудования или поражения людей, но лучше всего во время грозы отключать наиболее важные приборы.

Предназначено для защиты оборудования (в доме, квартире или офисе и пр.) от разрушающего воздействия мощных импульсных скачков напряжения, а также для отключения оборудования при выходе сетевого напряжения за допустимые пределы (170-270 В) в однофазных сетях. Включение напряжения происходит автоматически при восстановлении его до нормального по истечении задержки повторного включения. Устройство представляет собой реле контроля напряжения с мощным электромагнитным реле на выходе, дополненное защитой на варисторах.

Это прибор, сочетающий в себе электронное устройство контроля напряжения и электромагнитный расцепитель, собранные в одном корпусе. Реле напряжения серии PH - весьма эффективное устройство для защиты оборудования при возникновении длительных перенапряжений. Оно предназначено для отключения бытовой и промышленной однофазной нагрузки 220 В, 50 ГЦ при недопустимых колебаниях напряжения в сети с последующим автоматическим включением после восстановления ее параметров. Реле может быть изготовлено на базе микропроцессора или простого компаратора и оснащено устройством регулировки верхнего и нижнего порога срабатывания.

Реле напряжения могут быть как однофазными, так и трехфазными. Трехфазные реле напряжения используются на трехфазном вводе для защиты трехфазного оборудования. Они, как правит, отключают сеть не напрямую, а через электромагнитный контактор. При отсутствии трехфазных потребителей лучше всего будет поставить на каждую фазу по однофазному реле напряжения.

В зависимости от способа подключения реле напряжения могут быть выполнены в виде переносного устройства типа «вилка-розетка» или для установки в распределительном шкафу на DIN-рейку. Обычно такие реле имеют широкий диапазон регулировок и могут работать в нескольких независимых режимах: как реле напряжения, как реле минимального напряжения, как реле максимального напряжения или как реле времени с задержкой на включение.

Реле напряжения работают в диапазоне 100-400 В и делятся на устройства, имеющие свою контактную группу и управляющие нагрузкой самостоятельно, а также реле, которые управляют нагрузкой через более мощные контакторы.

Некоторые типы реле напряжения могут использоваться для самостоятельного отключения электрической сети при возникновении аварийного напряжения. Они обладают большей коммутационной способностью и управляют сетью с нагрузкой до 13 кВт, что вполне достаточно для квартиры или частного дома. Приборы устанавливаются на вводе после электросчетчика и УЗО на DIN-рейку.

Реле напряжения не имеет встроенной защиты от высоких токов, поэтому его нужно устанавливать после автоматического выключателя. При этом номинальный ток реле должен быть на 20-30 % выше номинального тока автомата. Реле напряжения также не защищают от высокого напряжения остаточных токов грозовых разрядов.

Датчик превышения напряжения ДПН 260 предназначен для ограничения максимально допустимого напряжения на нагрузке. Он работает совместно с УЗО или дифференциальным автоматом с током утечки 30-300 мА Напряжение срабатывания ДПН 260 устанавливается в пределах 255-260 В, время срабатывания - 0,01 с. Он выполнен в стандартном модуле на базе обычного варистора и предназначен для установки на DlN-рейку 35 мм. Следует отметить, что датчик создает ток утечки и вызывает срабатывание УЗО, которое не может включиться самостоятельно, что является его основным недостатком.

Это коммутационный аппарат дистанционного действия, коммутирующий нагрузки переменного или постоянного тока, который предназначен для частых включений и отключений. Они могут управлять осветительными, обогревательными и другими устройствами в силовых цепях постоянного и переменного тока с напряжением до 380 В и частотой 50 Гц.

Контакторы не обладают защитными функциями, но эффективно работают совместно с реле напряжения, обеспечивая своевременное отключение сети. Достоинством этих устройств является надежная контактная группа, способная выдержать большое число включений и отключений при значительной мощности управляемой нагрузки.

Контакторы могут использоваться, например, для управления режимом работы системы обогрева полов, когда мощность нагревательных кабелей превышает допустимую мощность терморегулятора.

Контактор, управляемый выключателем, импульсным реле, таймером или другим датчиком, позволяет включить (выключить) необходимую нагрузку, с которой электронные реле, рассчитанные на сравнительно небольшие токи, самостоятельно справиться не могут. Контакторы являются незаменимым элементом многофункциональной системы типа «Умный дам».

Контакторы могут быть как однофазными, так и трехфазными. Основными параметрами, по которым осуществляют выбор контакторов, являются следующие:

  • Номинальное рабочее напряжение сети
  • Номинальный рабочий ток
  • Напряжение катушки управления
  • Каличество/вид дополнительных контактов

Молния - это мощный электрический разряд (рис. 5.32), образующийся при сильной электризации туч или земли. Разряды молнии могут возникать внутри облака, между соседними наэлектризованными облаками или между наэлектризованным облаком и землей. Электрическое поле облака имеет огромную напряженность - миллионы В/м. Когда большие противоположно заряженные области подходят достаточно близко друг к другу, некоторые электроны и ионы, пробегая между ними, создают светящийся ионизированный канал, по которому за ними устремляются остальные заряженные частицы. По мере продвижения ионизированного канала (лидера) к земле напряженность поля на его конце усиливается, и под его действием из выступающих на поверхности земли предметов выбрасывается ответный стример, соединяющийся с лидером. Так происходит молниевый разряд. Эта особенность молнии используется для создания молниеотвода.

Все производственные объекты должны быть оборудованы системой молниезащиты. Молниезащита промышленных зданий является обязательным элементом безопасности, способным предотвратить серьезный материальный ущерб и человеческие жертвы.

Первичное действие молнии - прямой удар - опасен термическим и механическим разрушением здания. При прямом попадании молнии в провода, в линии возникает перенапряжение, вызывающее разрушение изоляции электрооборудования, а большие токи обуславливают термические повреждения проводников.

Вторичное действие молнии характеризуется образованием электрических токов в замкнутых токопроводящих системах здания (электропроводке, трубопроводе и пр.). Процесс переноса электрических потенциалов, возникших при ударе молнии, по внешним металлоконструкциям (трубопроводам) в защищаемое здание может привести к пожару, взрыву, выходу из строя электрического и электронного оборудования (табл. 5.11).

Возможные последствия молнии

Проявления

опасности

Поражающие факторы

Последствия

Прямой удар молнии в здание

Разряд до 200 кА, напряжением 1000 кВ, температура 30 000°С

Поражение людей, разрушение частей здания, пожары

Удаленный разряд при ударе молнии в коммуникации (до 5 км и больше)

Занесенный потенциал молнии через провода электроснабжения и металлические трубопроводы (возможный импульс перенапряжения - сотни кВ)

Поражения человека, нарушение изоляции электропроводки, выход из строя оборудования, потери баз данных, сбои в работе компьютерных систем

Близкий (до 500 м от здания) разряд молнии

Наведенный потенциал молнии в токопроводящих частях здания и электроустановках (возможный импульс перенапряжения - десятки кВ)

Поражение человека, нарушение изоляции электропроводки, возгорания, выход из строя оборудования, потери баз данных, сбои в работе компьютерных систем

Коммутации и короткие замыкания в цепи низкого напряжения

Импульс перенапряжения (до 4 кВ)

Выход из строя оборудования, потери баз данных, сбои в работе компьютерных систем

Еще одним из опасных проявлений молнии является ударная волна. Разряд молнии является электрическим взрывом и в некоторых аспектах похож на детонацию взрывчатого вещества. Он вызывает появление ударной волны, опасной в непосредственной близости.

Например, при скорости нарастания тока 30 000 ампер за 0,1 миллисекунду и диаметре ионизированного канала 10 см могут наблюдаться следующие давления ударной волны:

  • - на расстоянии от центра 5 см (граница светящегося канала молнии) - 0,93 МПа (разрушение конструкций, тяжелые контузии человека);
  • - на расстоянии 0,5 м - 0,025 МПа (разрушение непрочных строительных конструкций и травмы человека);
  • - на расстоянии 5м - 0,002 МПа (выбивание стекол и временное оглушение человека).

Опасное действие молнии в отношении человека может проявляться в следующем: контактное поражение (от наведенных потенциалов на металлические части оборудования), офтальмологическое поражение (вспышка молнии), шаговое напряжение (при растекании тока молнии в земле), тупая травма (вследствие действия ударной волны), прямой удар (прямое попадание молнии в человека).

При проектировании системы молниезащиты учитывается назначение объекта, особенности его конструкции и географическое местоположения региона, напрямую связанное с интенсивностью грозовой деятельности.

Молниезащита промышленных зданий разрабатывается исходя из типа опасного воздействия, возникающего при электрическом разряде молнии. Все промышленные объекты нуждаются в индивидуально подобранных мерах защиты от воздействия атмосферных перенапряжений. Наибольшей опасности подвергаются высотные объекты, поэтому в первую очередь в защите нуждаются высотные здания, мачты, трубы, опоры ЛЭП.

Первичным источником повреждений является ток молнии. В зависимости от точки поражения различают следующие источники повреждений (табл. 5.12) :

  • - S - удар молнии в здание (сооружение);
  • - S2 - удар молнии вблизи здания (сооружения);
  • - S3 - удар молнии в линии коммуникаций;
  • - S4 - удар молнии вблизи линий коммуникаций.

В зависимости от характеристик защищаемого здания (сооружения) удар молнии может нанести различные повреждения. На практике при оценке риска различают три основных типа повреждений, которые могут появиться в результате удара молнии:

  • - D - вред живым существам;
  • - D1 - физическое повреждение здания (сооружения) и (или) линий коммуникаций;
  • - D3 - отказ электрических и электронных систем.

Повреждение здания (сооружения) вследствие поражения молнией может быть ограничено частью сооружения или может простираться на несколько сооружений. Повреждения могут воздействовать на прилегающие к сооружению территории или окружающую среду (например химическое или радиоактивное заражение местности).

Каждый тип повреждения, один или в сочетании с другими, может привести к различным прямым и косвенным потерям в защищаемом сооружении. Тип возникающих потерь зависит от характеристик сооружения и его частей. Следует рассматривать следующие типы потерь:

  • - L - связанные с гибелью и травмированием людей;
  • - L2 - с полным или частичным разрушением общественных коммуникаций;
  • - L3 - с нанесением вреда объектам культурного назначения;
  • - L4 - экономические (связанные с разрушением здания (сооружения), его части и (или) нарушением или прекращением деятельности).

Установленные комбинации возможных повреждений и потерь в зависимости от типа источника

  • Трудно представить себе свою жизнь без кроссовок. Они используются во многих случаях и считаются одной из самых популярных видов обуви. Производители стараются изготавливать самые разнообразные модели. Это дает возможность выбрать именно то, что подходит к определенному фасону одежды. К большой радости нет проблем в том, где взять брендовую спортивную обувь. К примеру, кроссовки Adidas Continental […]

  • Профессиональная замена дверных замков обеспечит высокий уровень безопасности тех, кто находится за дверью. Граждане должны следить за техническим состоянием механизма. Как только он стал туго открываться или ключ был утерян, стоит задуматься о замене. Дверной механизм нуждается в регулярном уходе, иначе в один прекрасный день дверь останется заблокированной. Если вас интересуют цены на замену дверных […]

  • Соблюдение гигиены и правил техники безопасности требуют использовать специальную летнюю спецобувь в лечебных учреждениях, на предприятиях пищевой промышленности и т.д. Помимо рабочей одежды, администрация предприятия или учреждения должна купить летнюю спецобувь, чтобы обеспечить своим сотрудникам максимум удобства и защиты при работе. Летняя рабочая обувь должна соответствовать нормативам ГОСТа соответствующей отрасли. Какие защитные свойства должна иметь […]

  • Электроэнергия стала неотъемлемой частью жизни современного общества. Сейчас многое зависит от ее наличия (это работа бытовой техники и другой техники в доме или на предприятиях, освещение и т.д.). Для подачи и функционирования организовывается электросеть с использованием специального оборудования. Сейчас мы попытаемся подробно разобраться в этом вопросе. Давайте разберём функциональные особенности электросетевого оборудования. На электрощитовое оборудование […]

  • Простота монтажа и настройки, небольшое количество режимов работы, точная регулировка температуры - четыре фактора, на которые стоит опираться при выборе терморегулятора. Одним из самых удобных видов контроля за температурным режимом нагрева/охлаждения является терморегулятор http://phantom-stab.ru/catalog/termoregulyatory/v-rozetku-s-datchikom с датчиком, устанавливаемый в розетку. На рынке есть пара популярных моделей - Terneo RZ и DigiTOP ТР-1, которые в отношении цены-качества […]