Обеззараживание воды. Обеззараживание питьевой воды – своевременная забота о собственном здоровье

По способу воздействия на микробов методы обеззараживания воды раделяют на химические, физические и комбинированные. В химическом методе должный эффект достигается путем внесения в воду биологически активных соединений. Физические методы обеззараживания подразумевают собой обработку воды различными физическими воздействиями,ну а в комбинированных применяется одновременно химическое и физическое воздействие.

Головными сооружениями водопровода, питающегося водой из открытого водоема, являются: сооружения для забора и улучшения качества воды, резервуар для чистой воды, насосное хозяйство и водонапорная башня. От нее отходит водовод и разводящая сеть трубопроводов, изготовленных из стали или имеющих антикоррозийные покрытия.

Итак, первый этап очистки воды открытого водоисточника -- это осветление и обесцвечивание. В природе это достигается путем длительного отстаивания. Но естественный отстой протекает медленно и эффективность обесцвечивания при этом невелика. Поэтому на водопроводных станциях часто применяют химическую обработку коагулянтами, ускоряющую осаждение взвешенных частиц. Процесс осветления и обесцвечивания, как правило, завершают фильтрованием воды через слой зернистого материала (например, песок или измельченный антрацит). Применяют два вида фильтрования -- медленное и скорое.

Медленное фильтрование воды проводят через специальные фильтры, представляющие собой кирпичный или бетонный резервуар, на дне которого устраивают дренаж из железобетонных плиток или дренажных труб с отверстиями. Через дренаж профильтрованная воды отводится из фильтра. Поверх дренажа загружают поддерживающий слой щебня, гальки и гравия по крупности, постепенно уменьшающейся кверху, что не дает возможности мелким частицам просыпаться в отверстия дренажа. Толщина поддерживающего слоя -- 0,7 м. На поддерживающий слой загружаютфильтрующий слой (1 м) с диаметром зерен 0,25-0,5 мм. Медленный фильтр хорошо очищает воду только после созревания, которое состоит в следующем: в верхнем слое песка происходят биологические процессы -- размножение микроорганизмов, гидробионтов, жгутиковых, затем их гибель, минерализация органических веществ и образование биологической пленки с очень мелкими порами, способными задерживать даже самые мелкие частицы, яйца гельминтов и до 99% бактерий. Скорость фильтрации составляет 0,1-0,3 м/ч.

Медленнодействующие фильтры применяют на малых водопроводах для водоснабжения сел и поселков городского типа. Раз в 30-60 дней поверхностный слой загрязненного песка снимают вместе с биологической пленкой.

Стремление ускорить осаждение взвешенных частиц, устранить цветность воды и ускорить процесс фильтрования привело к проведению предварительного коагулирования воды. Для этого к воде добавляют коагулянты, т. е. вещества, образующие гидроокиси с быстро оседающими хлопьями. В качестве коагулянтов применяют сернокислый алюминий -- Al2(SO4)3 ; хлорное железо -- FeSl^ сернокислое железо -- FeSO4 и др. Хлопья коагулянта обладают огромной активной поверхностью и положительным электрическим зарядом, что позволяет им адсорбировать даже мельчайшую отрицательно заряженную взвесь микроорганизмов и коллоидных гуминовых веществ, которые увлекаются на дно отстойника оседающими хлопьями. Условия эффективности коагуляции -- наличие бикарбонатов. На 1 г коагулянта добавляют 0,35 г Са(ОН)2. Размеры отстойников (горизонтальных или вертикальных) рассчитаны на 2-3-часовое отстаивание воды.

После коагуляции и отстаивания вода подается на скорые фильтры с толщиной фильтрующего слоя песка 0,8 м и диаметром песчинок 0,5-1 мм. Скорость фильтрации воды составляет 5-12 м/час. Эффективность очистки воды: от микроорганизмов -- на 70-98% и от яиц гельминтов -- на 100%. Вода становится прозрачной и бесцветной.

Благодаря тому, что в процессе осветления происходит устранение мутности воды из-за снижения содержания в ней примесей, находящихся во взвешенном состоянии, такой процесс как обеззараживание воды , следующий за ним, значительно упрощается. Это и неудивительно, ведь вместе с песком и яйцами гельминтов в процессе осветления исчезает и значительная часть микроорганизмов.

Очистку фильтра проводят путем подачи воды в обратном направлении со скоростью, в 5-6 раз превышающей скорость фильтрования в течение 10-15 мин.

С целью интенсификации работы описанных сооружений используют процесс коагуляции в зернистой загрузке скорых фильтров (контактная коагуляция). Такие сооружения называют контактными осветелителями. Их применение не требует строительства камер хлопьеобразования и отстойников, что позволяет уменьшить объем сооружений в 4-5 раз. Контактный фильтр имеет трехслойную загрузку. Верхний слой -- керамзит, полимерная крошка и др. (размер частиц --- 2,3-3,3 мм).

Средний слой -- антрацит, керамзит (размер частиц -- 1,25-2,3 мм).

Нижний слой -- кварцевый песок (размер частиц -- 0,8-1,2 мм). Над поверхностью загрузки укрепляют систему перфорированных труб для введения раствора коагулянта. Скорость фильтрации до 20 м/час.

При любой схеме заключительным этапом обработки воды наводопроводе из поверхностного источника должно быть обеззараживание.

Итак, как обеззараживать воду , спросите вы? Достаточно просто, ведь сегодня существует множество методов, которые помогают полностью очистить воду, сделав ее абсолютно безопасной. Разумеется, пытаться обеззаразить воду самостоятельно не стоит, ведь сегодня создано множество специализированных установок, которые выполнят данную процедуру быстрее, и главное качественнее, чем вы сами.

При организации централизованного хозяйственно-питьевого водоснабжения небольших населенных пунктов и отдельных объектов (дома отдыха, пансионаты, пионерские лагеря) в случае использования в качестве источника водоснабжения поверхностных водоемов необходимы сооружения небольшой производительности. Этим требованиям отвечают компактные установки заводского изготовления "Струя" производительностью от 25 до 800 м3/сутки.

В установке используют трубчатый отстойник и фильтр с зернистой загрузкой. Напорная конструкция всех элементов установки обеспечивает подачу исходной воды насосами первого подъема через отстойник и фильтр непосредственно в водонапорную башню, а затем потребителю. Основное количество загрязнений оседает в трубчатом отстойнике. Песчаный фильтр обеспечивает окончательное извлечение из воды взвешенных и коллоидных примесей.

Хлор для обеззараживания может вводиться либо перед отстойником, либо сразу в фильтрованную воду. Промывку установки проводят 1-2 раза в сутки в течение 5-10 мин обратным потоком воды. Продолжительность обработки воды не превышает 40-60 мин, тогда как на водопроводной станции этот процесс составляет от 3 до 6 ч.

Эффективность очистки и обеззараживания воды на установке "Струя" достигает 99,9%.

Обеззараживание воды может быть проведено химическими и физическими (безреагентными) методами.

Остановимся немного поподробнее на каждом из этих методов, чтобы выяснить чем обеззараживают воду в каждом из них. Немного ниже приведены принципы обеззараживания воды в каждом из этих методов и описаны их преимущества и недостатки. И если вы именно сейчас выбираете как очистить воду, то внимательно ознакомьтесь с данной весьма полезной информацией.

К химическим методам обеззараживания воды относят хлорирование и озонирование. Задача обеззараживания -- уничтожение патогенных микроорганизмов, т. е. обеспечение эпидемической безопасности воды.

Россия была одной из первых стран, в которой хлорирование воды стало применяться на водопроводах. Произошло это в 1910 г. Однако на первом этапе хлорирование воды проводили только при вспышках водных эпидемий.

В настоящее время хлорирование воды является одним из наиболее широко распространенных профилактических мероприятий, сыгравших огромную роль в предупреждении водных эпидемий. Этому способствует доступность метода, его дешевизна и надежность обеззараживания, а также многовариантность, т. е. возможность обеззараживать воду на водопроводных станциях, передвижных установках, в колодце (при его загрязнении и ненадежности), на полевом стане, в бочке, ведре и во фляге. Принцип хлорирования основан на обработке воды хлором или химическими соединениями, содержащими хлор в активной форме, обладающей окислительным и бактерицидным действием.

Химизм происходящих процессов состоит в том, что при добавлении хлора к воде происходит его гидролиз:

т. е. образуются соляная и хлорноватистая кислота. Во всех гипотезах, объясняющих механизм бактерицидного действия хлора, хлорноватистой кислоте отводят центральное место. Небольшие размеры молекулы и электрическая нейтральность позволяют хлорноватистой кислоте быстро пройти через оболочку бактериальной клетки и воздействовать на клеточные ферменты (SH-группы;), важные для обмена веществ и процессов размножения клетки. Это подтверждено при электронной микроскопии: выявлено повреждение оболочки клетки, нарушение ее проницаемости и уменьшение объема клетки.

На крупных водопроводах для хлорирования применяют газообразный хлор, поступающий в стальных баллонах или цистернах в сжиженном виде. Используют, как правило, метод нормального хлорирования, т. е. метод хлорирования по хлорпотребности.

Имеет важное значение выбор дозы, обеспечивающий надежное обеззараживание. При обеззараживании воды хлор не только способствует гибели микроорганизмов, но и взаимодействует с органическими веществами воды и некоторыми солями. Все эти формы связывания хлора объединяются в понятие "хлорпоглощаемость воды".

В соответствии с СанПиН 2.1.4.559-96 "Питьевая вода..." доза хлора должна быть такой, чтобы после обеззараживания в воде содержалось 0,3-0,5 мг/л свободного остаточного хлора. Этот метод, не ухудшая вкуса воды и не являясь вредным для здоровья, свидетельствует о надежности обеззараживания. Количество активного хлора в миллиграммах, необходимое для обеззараживания 1 л воды, называют хлорпотребностью.

Кроме правильного выбора дозы хлора, необходимым условием эффективного обеззараживания является хорошее перемешивание воды и достаточное время контакта воды с хлором: летом не менее 30 минут, зимой не менее 1 часа.

Модификации хлорирования: двойное хлорирование, хлорирование с аммонизацией, перехлорирование и др.

Двойное хлорирование предусматривает подачу хлора на водопроводные станции дважды: первый раз перед отстойниками, а второй -- как обычно, после фильтров. Это улучшает коагуляцию и обесцвечивание воды, подавляет рост микрофлоры в очистных сооружениях, увеличивает надежность обеззараживания.

Хлорирование с аммонизацией предусматривает введение в обеззараживаемую воду раствора аммиака, а через 0,5-2 минуты -- хлора. При этом в воде образуются хлорамины -- монохлорамины (NH2Cl) и дихлорамины (NHCl2), которые также обладают бактерицидным действием. Этот метод применяется для обеззараживания воды, содержащей фенолы, с целью предупреждения образования хлорфенолов. Даже в ничтожных концентрациях хлорфенолы придают воде аптечный запах и привкус. Хлорамины же, обладая более слабым окислительным потенциалом, не образуют с фенолами хлорфенолов. Скорость обеззараживания воды хлораминами меньше, чем при использовании хлора, поэтому продолжительность дезинфекций воды должна быть не меньше 2 ч, а остаточный хлор равен 0,8-1,2 мг/л.

Перехлорирование предусматривает добавление к воде заведомо больших доз хлора (10-20 мг/л и более). Это позволяет сократить время контакта воды с хлором до 15-20 мин и получить надежное обеззараживание от всех видов микроорганизмов: бактерий, вирусов, риккетсий Бернета, цист, дизентерийной амебы, туберкулеза и даже спор сибирской язвы. По завершении процесса обеззараживания в воде остается большой избыток хлора и возникает необходимость дехлорирования. С этой целью в воду добавляют гипосульфит натрия или фильтруют воду через слой активированного угля.

Перехлорирование применяется преимущественно в экспедициях и военных условиях.

К недостаткам метода хлорирования следует отнести:

сложность транспортировки и хранения жидкого хлора и его токсичность;

продолжительное время контакта воды с хлором и сложность подбора дозы при хлорировании нормальными дозами;

образование в воде хлорорганических соединений и диоксинов, небезразличных для организма;

изменение органолептических свойств воды.

И тем не менее высокая эффективность делает метод хлорирования самым распространенным в практике обеззараживания воды.

Оно и понятно, ведь обеззараживание воды хлором это самый дешевый, и вместе с этим, действенный способ. К тому же, благодаря современной технологии обеззараживания воды гипохлоритом натрия сегодня можно значительно уменьшить вредность воздействия данного метода на окружающую среду. Само собой, по сравнению с традиционным жидким хлором этот метод более дорогой, но зато куда более безопасный.

В поисках безреагентных методов или реагентов, не изменяющих химического состава воды, обратили внимание на озон. Впервые эксперименты с определением бактерицидных свойств озона были проведены во Франции в 1886 г. Первая в мире производственная озонаторная установка была построена в 1911 г. в Петербурге.

В настоящее время метод озонирования воды является одним из самых перспективных и уже находит применение во многих странах мира -- Франции, США т. д. У нас озонируют воду в Москве, Ярославле, Челябинске, на Украине (Киев, Днепропетровск, Запорожье и др.).

Озон (О3) -- газ бледно-фиолетового цвета с характерным запахом. Молекула озона легко отщепляет атом кислорода. При разложении озона в воде в качестве промежуточных продуктов образуются короткоживущие свободные радикалы НО2 и ОН. Атомарный кислород и свободные радикалы, являясь сильными окислителями, обусловливают бактерицидные свойства озона.

Наряду с бактерицидным действием озона в процессе обработки воды происходит обесцвечивание и устранение привкусов и запахов.Озон получают непосредственно на водопроводных станциях путем тихого электрического разряда в воздухе. Установка для озонирования воды объединяет блоки кондиционирования воздуха, получения озона и смешения его с обеззараживаемой водой. Косвенным показателем эффективности озонирования является остаточный озон на уровне 0,1-0,3 мг/л после камеры смешения.

Преимущества озона перед хлором при обеззараживании воды состоит в том, что озон не образует в воде токсических соединений (хлорорганических соединений, диоксинов, хлорфенолов и др.), улучшает органолептические показатели воды и обеспечивает бактерицидный эффект при меньшем времени контакта (до 10 мин). Он более эффективен по отношению к патогенным простейшим -- дизентерийной амебе, лямблиям и др.

Широкое внедрение озонирования в практику обеззараживания воды сдерживается высокой энергоемкостью процесса получения озона и несовершенством аппаратуры.

Олигодинамическое действие серебра в течение длительного времени рассматривалось как средство для обеззараживания преимущественно индивидуальных запасов воды. Серебро обладает выраженным бактериостатическим действием. Даже при введении в воду незначительного количества ионов микроорганизмы прекращают размножение, хотя остаются живыми и даже способными вызвать заболевание. Концентрации серебра, способные вызвать гибель большинства микроорганизмов, при длительном употреблении воды токсичны для человека. Поэтому серебро в основном применяется для консервирования воды при длительном хранении ее в плавании, космонавтике и т. д.

Для обеззараживания индивидуальных запасов воды применяются таблетированные формы, содержащие хлор.

Подобные таблетки для обеззараживания питьевой воды идеально подходят для максимально эффективного очищения воды, полученной из природных водных источников. Однако, данные препараты бывают разные, с совершенно различным содержанием хлора, поэтому необходимо внимательно следить за дозировкой. Кроме того, нужно внимательно следить и за сроком годности таких таблеток, иначе вы рискуете не получить нужного результата.

Аквасепт -- таблетки, содержащие 4 мг активного хлора мононатриевой соли дихлори-зоциануровой кислоты. Растворяется в воде в течение 2-3 мин, подкисляет воду и тем самым улучшает процесс обеззараживания.Пантоцид -- препарат из группы органических хлораминов, растворимость -- 15-30 мин., выделяет 3 мг активного хлора.

К физическим методам относятся кипячение, облучение ультрафиолетовыми лучами, воздействие ультразвуковыми волнами, токами высокой частоты, гамма-лучами и др.

Преимущество физических методов обеззараживания перед химическими состоит в том, что они не изменяют химического состава воды, не ухудшают ее органолептических свойств. Но из-за их высокой стоимости и необходимости тщательной предварительной подготовки воды в водопроводных конструкциях применяется только ультрафиолетовое облучение, а приместном водоснабжении -- кипячение.

Ультрафиолетовые лучи обладают бактерицидным действием. Это было установлено еще в конце прошлого века А. Н. Маклановым. Максимально эффективен участок УФ-части оптического спектра в диапазоне волн от 200 до 275 нм. Максимум бактерицидного действия приходится на лучи с длиной волны 260 нм. Механизм бактерицидного действия УФ-облучения в настоящее время объясняют разрывом связей в энзимных системах бактериальной клетки, вызывающим нарушение микроструктуры и метаболизма клетки, приводящим к ее гибели. Динамика отмирания микрофлоры зависит от дозы и исходного содержания микроорганизмов. На эффективность обеззараживания оказывают влияние степень мутности, цветности воды и ее солевой состав. Необходимой предпосылкой для надежного обеззараживания воды УФ-лучами является ее предварительное осветление и обесцвечивание.

Преимущества ультрафиолетового облучения в том, что УФ-лучи не изменяют органолептических свойств воды и обладают более широким спектром антимикробного действия: уничтожают вирусы, споры бацилл и яйца гельминтов.

Ультразвук применяют для обеззараживания бытовых сточных вод, т. к. он эффективен в отношении всех видов микроорганизмов, в том числе и спор бацилл. Его эффективность не зависит от мутности и его применение неприводит к пенообразованию, которое часто имеет место при обеззараживании бытовых стоков.

Гамма-излучение очень эффективный метод. Эффект мгновенный. Уничтожение всех видов микроорганизмов, однако в практике водопроводов пока не находит применения.

Под обеззараживанием питьевой воды понимают мероприятия по уничтожению в воде бактерий и вирусов , вызывающих инфекционные заболевания. По способу воздействия на микроорганизмы методы обеззараживания воды подразделяются на химические, или реагентные; физические, или безреагентные, и комбинированные. В первом случае должный эффект достигается внесением в воду биологически активных химических соединений; безреагентные методы обеззараживания подразумевают обработку воды физическими воздействиями, а в комбинированных используются одновременно химическое и физическое воздействия.

К химическим способам обеззараживания питьевой воды относят ее обработку окислителями: хлором , озоном и т. п., а также ионами тяжелых металлов. К физическим – обеззараживание ультрафиолетовыми лучами, ультразвуком и т. д. Перед обеззараживанием вода обычно подвергается очистке фильтрацией и (или) коагуляцией, при которой удаляются взвешенные вещества, яйца гельминтов и значительная часть микроорганизмов.

Метод озонирования воды технически сложен и наиболее дорогостоящ. Технологический процесс включает последовательные стадии очистки воздуха, его охлаждения и осушки, синтеза озона, смешения озоновоздушной смеси с обрабатываемой водой, отвода и деструкции остаточной озоновоздушной смеси, вывода ее в атмосферу. Все это требует также дополнительного вспомогательного оборудования (озонаторы, компрессоры, установки осушки воздуха, холодильные агрегаты и т. д.), объемных строительно-монтажных работ.

Озон токсичен. Предельно допустимое содержание этого газа в воздухе производственных помещений 0,1 г/м 3 . К тому же существует опасность взрыва озоновоздушной смеси.

Следует отметить, что, хотя ряд зарубежных фирм предлагает автономные озонаторные установки для организации водоснабжения отдельного коттеджа или очистки воды в бассейне, кроме очень высокой стоимости таких устройств, требуется обеспечение их высококачественного обслуживания. Применение установки, предлагаемой одной из отечественных фирм, для автономного водоснабжения без всяких систем контроля содержания озона в воздухе и воде, может печально кончиться для ее владельцев. В этих условиях возможно применение дозирования в воду гипохлорита, получаемого в малогабаритном электролизере типа «Санатор», хотя и здесь требуется квалифицированное обслуживание.

Применение тяжелых металлов (медь, серебро и др.) для обеззараживания питьевой воды основано на использовании их «олигодинамического» свойства – способности оказывать бактерицидное действие в малых концентрациях. Эти металлы могут вводиться в виде растворов солей либо методом электрохимического растворения. В обоих этих случаях возможен косвенный контроль их содержания в воде. Следует заметить, что ПДК ионов серебра и меди в питьевой воде достаточно жесткие, а требования к воде, сбрасываемой в рыбохозяйственные водоемы, еще выше.

К химическим способам обеззараживания питьевой воды относится также широко применявшееся в начале 20 в. о беззараживание соединениями брома и йода, обладающими более выраженными бактерицидными свойствами, чем хлор, но требующими и более сложной технологии. В современной практике для обеззараживания питьевой воды йодированием предлагается использовать специальные иониты, насыщен ные йодом. При пропускании через них воды йод постепенно вымыва ется из ионита, обеспечивая необходимую дозу в воде. Такое решение приемлемо для малогабаритных индивидуальных установок. Существенным недостатком является изменение концентрации йода во время работы и отсутствие постоянного контроля его концентрации.

Применение активных углей и катионитов, насыщенных серебром , например, С-100 Ag или С-150 Ag фирмы « Purolite », преследует цели не «серебрения» воды, а предотвращения развития микроорганизмов при прекращении движения воды. При остановках создаются идеальные условиях для их размножения – большое количество органики, задержанное на поверхности частиц, их огромная площадь и повышенная температура. Наличие серебра в структуре этих частиц резко уменьшает вероятность обсеменения слоя загрузки. Серебросодержащие катиониты разработки ОАО НИИПМ – КУ-23СМ и КУ-23СП – содержат в себе значительно большее количество серебра и предназначены для обеззараживания воды в установках небольшой производительности.

Из физических способов обеззараживания питьевой воды наибольшее распространение получило обеззараживание воды ультрафиолетовыми лучами , бактерицидные свойства которых обусловлены действием на клеточный обмен и особенно на ферментные системы бактериальной клетки. Ультрафиолетовые лучи уничтожают не только вегетативные, но и споровые формы бактерий, и не изменяют органолептических свойств воды. В ажно отметить, что поскольку при УФ-облучении не образуются токсичные продукты, то не существует верхнего порога дозы. Увеличением дозы УФ-излучения почти всегда можно добиться желаемого уровня обеззараживания.

Основным недостатком метода является полное отсутствие последействия.

Организация процесса УФ-обеззараживания требует больших капитальных вложений, чем хлорирование, но меньших, чем озонирование. Более низкие эксплуатационные расходы делают УФ-обеззара­живание и хлорирование сопоставимыми в экономическом плане. Расход электроэнергии незначителен, а стоимость ежегодной замены ламп составляет не более 10% от цены установки. Для индивидуального водоснабжения УФ-установки являются наиболее привлекательными.

Фактором, снижающим эффективность работы установок УФ-обез­зараживания при длительной эксплуатации, является загрязнение кварцевых чехлов ламп отложениями органического и минерального состава. Крупные установки снабжаются автоматической системой очистки, осуществляющей промывку путем циркуляции через установку воды с добавлением пищевых кислот. В остальных случаях применяется механическая очистка.

Обеззараживание питьевой воды ультразвуком основано на способности его вызывать т. н. кавитацию – образование пустот, создающих большую разность давления, что ведет к разрыву клеточной оболочки и гибели бактериальной клетки. Бактерицидное действие ультразвука разной частоты весьма значительно и зависит от интенсивности звуковых колебаний.

Из физических способов индивидуального обеззараживания воды наиболее распространенным и надежным является кипячение, при котором, кроме уничтожения бактерий, вирусов, бактериофагов, антибиотиков и др. биологических объектов, часто содержащихся в открытых водоисточниках, удаляются растворенные в воде газы и уменьшается жесткость воды. Вкусовые качества воды при кипячении меняются мало.

Во многих случаях наиболее эффективным оказывается комплексное применение реагентных и безреагентных методов обеззараживания воды . Сочетание УФ-обеззараживания с последующим хлорированием малыми дозами обеспечивает как высочайшую степень очистки, так и отсутствие вторичного биозагрязнения воды. Так, обработкой воды бассейнов УФ-облучением в сочетании с хлорированием достигается не только высокая степень обеззараживания, снижение пороговой концентрации хлора в воде, но и, как следствие, существенная экономия средств на расходе хлора и улучшение обстановки в самом бассейне.

Аналогично распространяется использование озонирования, при котором уничтожается микрофлора и часть органических загрязнений, с последующим щадящим хлорированием, обеспечивающим отсутствие вторичного биозагрязнения воды. При этом резко сокращается образование токсичных хлорорганических веществ.

Поскольку все микроорганизмы характеризуются определенными размерами, пропуская воду через фильтрующую перегородку с размерами пор меньшими, чем микроорганизмы, можно полностью очистить от них воду. Так, фильтрующие элементы, имеющие размер пор менее 1 микрона, согласно действующим
ТИ 10-5031536-73-10 на безалкогольную продукцию, считаются обеспложивающими, т. е. стерилизующими. Хотя при этом из воды удаляются только бактерии, но не вирусы. Для более «тонких» процессов, когда недопустимо присутствие любых микроорганизмов, например, в микроэлектронике, применяют фильтры с порами размером не более 0,1–0,2 мкм.

Достаточно новыми способами обеззараживания воды являются электрохимический и электроимпульсный. Серийно производятся установки «Изумруд», «Сапфир», «Аквамин» и т. п. Их работа основана на пропускании воды через электрохимический диафрагменный реактор, разделенный ультрафильтрационной металлокерамической мембраной на катодную и анодную область. При подаче постоянного тока в катодной и анодной камерах происходит образование щелочного и кислого растворов, электролитическое образование активного хлора. В этих средах гибнут практически все микроорганизмы и происходит частичное разрушение органических загрязнений. Конструкция проточного электрохимического элемента хорошо отработана, и набором из различного числа таких элементов получают установки заданной производительности. Кроме того, их используют для получения дезинфицирующих растворов – католита и анолита, применяемых в медицинской практике. Что касается заявлений разработчиков об изменении структуры воды и ее чудодейственных свойствах, оставим это без комментариев.

При электроимпульсном воздействии производится электрический разряд в воде – электрогидравлический удар, т. н. эффект Л. А. Юткина. При разряде возникает ударная волна сверхвысокого давления, световое излучение и образуется озон. Эти факторы губительно действуют на биологические объекты в воде.

Самый надежный способ продезинфицировать воду - кипячение как минимум 8 - 10 мин. Если жидкость взята из подозрительного или сильно загрязненного источника (что допускается лишь в крайних случаях), кипеть на медленном огне она должна полчаса.

Для большего обеззараживающего эффекта (в зависимости от местности) в воду при кипячении можно добавить:

  • Молодых веток ели, сосны, пихты, кедра, можжевельника - 100-200 г на ведро. Осевший на дне бурый, нерастворимый осадок пить нельзя.
  • Кору ивы, вербы, дуба, бука, молодую бересту - 100 -150 г на ведро воды и кипятить 20-40 мин или настаивать в теплой воде 6 часов.
  • 2-3 горсти хорошо промытого ягеля.
  • Лишайник (каменный мох), кору лесного или грецкого ореха - 50 г на 10 л воды.
  • Траву арники или календулы - 150-200 г на ведро, кипятить 10-20 мин или настаивать не менее 6 часов.
  • Траву ковыля, перекати-поля, тысячелистника или полевой фиалки из расчета 200 -300 г на ведро воды.
  • Верблюжью колючку или саксаул.
  • Устранить неприятный запах воды можно добавив в нее при кипячении древесного угля из костра и последующего отстаивания.

Химический

Надежней всего использовать выпускаемые промышленностью специальные таблетки для обеззараживания воды, такие как пантоцид, аквасепт, акватабс, клорсепт, гидрохлоназон и другие. Одна таблетка такого препарата обычно обеззараживает 0,5-0,75 л воды через 15 - 20 мин после растворения.

Если вода сильно загрязнена, дозу надо удвоить. При этом муть оседает на дно, вода светлеет. Оценить качество таблеток для обеззараживания воды можно следующим образом - если таблет-ка содержит 3-4 мг активного хлора, то качество отличное, 2-3 мг - хорошее, 1-2 мг - удовлетворительное, меньше 1 мг - плохое, использовать бессмыс¬ленно.

В какой-то степени их могут заменить:

  • Марганцовокислый калий, но надо знать сколько его добавлять в воду, иначе можно убить всю микрофлору кишечника. Хватит примерно 1 - 2 г на ведро воды, или на литр воды несколько кристалликов чуть меньше спичечной головки, при этом цвет раствора должен быть слабо-розовым. Этого количества вполне достаточно чтобы убить постороннюю микрофлора (особенно кишечную и дезинтерийную палочку и серебристый стафиллококк).
  • Йод из расчета 3-4 капли 5% настойки на 1 л воды, хорошо перемешать и дать отстояться в течение часа. Также существуют ряд препаратов (йодные таблетки), используемые для индивидуальной дезинфекции воды. По оценкам специалистов марганцовка и йод это наиболее эффективные средства для обеззараживания малых объемов воды в полевых условиях.
  • Алюминиевые квасцы - щепотку на ведро воды.
  • В крайнем случае поможет даже обыкновенная поваренная соль - одна столовая ложка на 1,5 - 2 л воды.

Во всех случаях воде надо дать отстояться в течение 15-30 мин.

Хорошим средством для дезинфекции воды являются различного рода фильтры промышленного изготовления: "Барьер", "Брита" и пр. Удобнее всего иметь карманный вариант фильтра типа "Родник", имеющего вид пластиковой трубочки, один конец которой опускается в водоем, а через другой вода всасывается ртом. Обеззараживание воды в таком фильтре производится с помощью мощных йодосодержащих реагентов.

Также хорошо пригодны для полевых условий портативные фильтры Katadyn, которые позволяют пить воду из любого источника, не опасаясь за свое здоровье. Как говорят производители, в процессе фильтрации уничтожаются бактерии, микробы и вирусы, а некоторые модели еще и улучшают вкус воды.

"Природный"

В полевых условиях можно использовать листья ромашки, чистотетела, брусники, малины или зверобоя, и других лекарственных растений-антисептиков, бактерицидные свойства которых признанны медициной. Чистотел - лидер среди лекарственных растений антибактерицидного действия, убивает почти все известные науке патогенные микроорганизмы, так как это растение синтезирует йодсодержащие соединения, его едкий сок - яркого жёлто-оранжевого цвета. Кроме то можно использовать бактерицидные свойства грибов, например дождевика, белого гриба, чага и др.

Минерал кремний - мощный активатор воды и обладает значительными бактерицидными свойствами. Вода не портится, долго сохраняется, очищается. Кремниевая вода готовится очень просто, нужно опустить кремний в емкость с сырой или кипяченой водой и всё время хранить его там. Количество кремния из расчета 1-3 г на 1 л. Дать отстоятся сутки.

Неплохим дезинфицирующим средством считается серебро. Поэтому все серебряные украшения, оказавшиеся на людях потерпевших аварию, следует изъять и пустить по прямому назначению. Для увеличения площади украшения можно расплющить, разбив между камнями. Но не следует забывать что серебро - тяжелый металл, имеющий высокую степень опасности для здоровья (в одном ряду со свинцом, кобальтом, мышьяком и другими веществами).

Как и другие тяжелые металлы, серебро способно накапливаться в организме и вызывать заболевания (аргироз - отравление серебром). Кроме того, для бактерицидного действия серебра на бактерии требуются достаточно большие концентрации, а в допустимых количествах (около 50 мкг/л) оно способно оказывать лишь бактериостатическое действие, т.е. останавливать рост бактерий, не убивая их. А некоторые виды бактерий вообще практически не чувствительны к серебру. Все эти свойства несколько ограничивают применение серебра. Оно может быть уместно только в целях сохранения исходно чистой воды для длительного хранения.

Создание запасов воды и водопотребление.

Создание запасов воды целесообразно если во время переходов источники воды расположены на большом расстоянии друг от друга. В жарком тропическом климате вода при хранении быстро изменяет свои вкусовые качества, зацветает, и поэтому перед употреблением ее желательно кипятить. Для хранения и транспортировки воды используются различного вида емкости-канистры, изготовленные из металла, не поддающегося окислению, или из пластиков. Перед заправкой, чтобы обеспечить сохранность воды в течение длительного времени, емкость дезинфицируют, а затем, тщательно промыв, заливают кипяченой водой.

Для длительного хранения воды иногда пользуются металлическим серебром. Антимикробный эффект серебра в 1750 раз сильнее действия карболовой кислоты, в 3,5 раза - сулемы. Полагают, что антимикробное действие серебра даже выше, чем у многих антибиотиков, не говоря уже о том, что серебро легко справляется с антибиотикоустойчивыми штаммами бактерий.

В жару, после долгого перехода, не следует пить холодную воду сразу и много. Надо в течение нескольких минут остыть, затем прополоскать рот прохладной водой и лишь потом пить. Если этим правилом пренебречь, то можно легко и очень сильно простудиться. Не рекомендуется также набрасываться на воду, стараясь выпить возможно больше залпом. Иногда бывает достаточно выждать 10 - 15 мин, чтобы по их истечении напиться гораздо меньшим количеством воды.

Пить следует мелкими глотками, не спеша, делая 3 -5-минутные перерывы. Особенно важно придерживаться данного правила, когда воду приходится переносить на себе. Если какое-то время вы обходились без воды, то найдя ее, не набрасывайтесь на нее с жадностью. Сначала потягивайте воду маленькими глотками, так как большое количество воды, попадая в обезвоженный организм, вызывает рвоту, что ведет к еще большей потере драгоценной влаги.

Основные меры по водообеспечению и водопотреблению в экстремальных условиях:

  1. Поиск воды, особенно в условиях пустыни, должен быть одним из самых первоочередных мероприятий;
  2. При наличии водоисточника пить воду без ограничений, а в жарком климате несколько больше, чем требуется для удовлетворения жажды;
  3. При ограниченных запасах воды установить, исходя из обстоятельств, жесткую суточную норму воды, уменьшить по возможности количество потребляемой пищи, особенно вызывающей жажду;
  4. Очистка и обеззараживание воды, добываемой из стоячих и слабопроточных водоемов;
  5. Устройство укрытий от прямой солнечной радиации и определение такого режима деятельности, который обеспечивал бы минимальные тепловые нагрузки.

Чтобы свести потерю влаги организмом к минимуму, следует предпринять следующие меры:

  • Всегда пить воду маленькими глотками, по долгу задерживая ее во рту.
  • Не перенапрягатся, больше отдыхать, не курить.
  • Не лежать на теплой земле и горячих камнях.
  • Не пить спиртных напитков, алкоголь забирает жидкость от жизненно важных органов и связывает ее с другими веществами.
  • Не разговаривать

Министерство образования Республики Башкортостан

Государственное бюджетное образовательное учреждение

Среднего профессионального учреждения

«Аксеновский сельскохозяйственный техникум»

По дисциплине: Биология

На тему: Современные методы обеззараживание воды.

Проверил преподаватель: Выполнил студент

Тимербаев С.А. Специальности «Агрономия»

Оценка________ Виталий Павлов

Подпись_________ группы А-14

с. Ким 2015 г

Введение

Среди многих отраслей современной техники, направленных на повышение уровня жизни людей, благоустройства населенных мест и развития промышленности, водоснабжение занимает большое и почетное место. Ведь вода – это непременная часть всех живых организмов, жизнедеятельность которых без воды невозможна. Для нормального течения физиологических процессов в организме человека и для создания благоприятных условий жизни людей очень важно гигиеническое значение воды. В настоящее время обеспечение населения водой высокого качества стало настоящей проблемой.

Проблема питьевого водоснабжения затрагивает очень многие стороны жизни человеческого общества в течение всей истории его существования. В настоящее время это проблема социальная, политическая, медицинская, географическая, а также инженерная и экономическая. На питьевые и бытовые потребности населения, коммунальных объектов, лечебно-профилактических учреждений, а также на технологические нужды предприятий пищевой промышленности расходуется около 5-6% общего водопотребления. Технически обеспечить подачу такого количества воды нетрудно, но потребности должны удовлетворяться водой определённого качества, так называемой питьевой водой.

Питьевая вода – это вода, отвечающая по своему качеству в естественном состоянии или после обработки (очистки, обеззараживания) установленным нормативным требованиям и предназначенная для питьевых и бытовых нужд человека. Основные требования к качеству питьевой воды: быть безопасной в эпидемическом и радиационном отношении, быть безвредной по химическому составу, обладать благоприятными органолептическими свойствами. Для удовлетворения этих требований в настоящее время используется целый комплекс мер по подготовке питьевой воды.

Конечно, в реках и других водоёмах происходит естественный процесс самоочищения воды. Однако он протекает очень медленно. Реки уже давно не справляются со сбросами сточных вод и другими источниками загрязнения. А ведь уровень бактерицидного воздействия в сточных водах часто превышает норму в тысячи и миллионы раз. Стоки попадают в реки и озёра, а большинство городских водоканалов берут воду именно из них. Таким образом, обязательными процессами в подготовке питьевой воды являются качественная очистка и обеззараживание сточных вод.

Обеззараживанием воды называется процесс уничтожения находящихся там микроорганизмов. В процессе первичной очистки вод задерживаются до 98% бактерий. Но среди оставшихся бактерий, а также среди вирусов могут находиться патогенные (болезнетворные) микробы, для уничтожения которых нужна специальная обработка воды – её обеззараживание.

При полной очистке поверхностных вод обеззараживание необходимо всегда, а при использовании подземных вод – только тогда, когда микробиологические свойства исходной воды этого требуют. Но на практике использование для питья и подземных, и поверхностных вод практически всегда без обеззараживания невозможно.

Вода природных источников питьевого водоснабжения, как правило, не соответствует гигиеническим требованиям к питьевой воде и требует перед подачей населению подготовки - очистки и обеззараживания.

Очистка воды, включающая её осветление и обесцвечивание, является первым этапом в подготовке питьевой воды. В результате её из воды удаляются взвешенные вещества, яйца гельминтов и значительная часть микроорганизмов. Но часть патогенных бактерий и вирусов проникает через очистные сооружения и содержится в фильтрованной воде. Для создания надёжного и управляемого барьера на пути возможной передачи через воду кишечных инфекций и других не менее опасных болезней применяется её обеззараживание, т.е. уничтожение живых и вирулентных патогенных микроорганизмов – бактерий и вирусов. Ведь именно микробиологические загрязнения воды занимают первое место в оценке степени риска для здоровья человека. Сегодня доказано, что опасность заболеваний от присутствующих в воде болезнетворных микроорганизмов в тысячи раз выше, чем при загрязнении воды химическими соединениями различной природы. Поэтому обеззараживание до пределов, отвечающих установленным гигиеническим нормативам, является обязательным условием получения воды питьевого качества.

В практике коммунального водоснабжения используют реагентные (хлорирование, озонирование, воздействие препаратами серебра), безреагентные (ультрафиолетовые лучи, воздействие импульсными электрическими разрядами, гамма-лучами и др.) и комбинированные методы обеззараживания воды. В первом случае должный эффект достигается внесением в воду биологически активных химических соединений. Безреагентные методы обеззараживания подразумевают обработку воды физическими воздействиями. А в комбинированных методах используются одновременно химическое и физическое воздействия.

При выборе метода обеззараживания следует учитывать опасность для здоровья человека остаточных количеств биологически активных веществ, применяемых для обеззараживания или образующихся в процессе обеззараживания, возможность изменения физико-химических свойств воды (например, образование свободных радикалов). Важными характеристиками метода обеззараживания являются также его эффективность в отношении различных видов микронаселения воды, зависимость эффекта от условий среды.

При химических способах обеззараживания питьевой воды для достижения стойкого обеззараживающего эффекта необходимо правильно определить дозу вводимого реагента и обеспечить достаточную длительность его контакта с водой. Доза реагента определяется пробным обеззараживанием или расчетными методами. Для поддержания необходимого эффекта при химических способах обеззараживания питьевой воды доза реагента рассчитывается с избытком (остаточный хлор, остаточный озон), гарантирующим уничтожение микроорганизмов, попадающих в воду некоторое время после обеззараживания.

При физических способах необходимо подвести к единице объема воды заданное количество энергии, определяемое как произведение интенсивности воздействия (мощности излучения) на время контакта.

Существуют и другие ограничения в использовании того или иного метода обеззараживания воды. На этих ограничениях, а также на достоинствах и недостатках методов обеззараживания мы подробно остановимся ниже.

2.1 Хлорирование

Самый распространенный и проверенный способ дезинфекции воды – первичное хлорирование. В настоящее время этим методом обеззараживается 98,6 % воды. Причина этого заключается в повышенной эффективности обеззараживания воды и экономичности технологического процесса в сравнении с другими существующими способами. Хлорирование позволяет не только очистить воду от нежелательных органических и биологических примесей, но и полностью удалить растворенные соли железа и марганца. Другое важнейшее преимущество этого способа – его способность обеспечить микробиологическую безопасность воды при ее транспортировании пользователю благодаря эффекту последействия.

Существенный недостаток хлорирования – присутствие в обработанной воде свободного хлора, ухудшающее ее органолептические свойства и являющееся причиной образования побочных галогенсодержащих соединений (ГСС). Бόльшую часть ГСС составляют тригалометаны (ТГМ) – хлороформ, дихлорбромметан, дибромхлорметан и бромоформ. Их образование обусловлено взаимодействием соединений активного хлора с органическими веществами природного происхождения. Этот процесс растянут по времени до нескольких десятков часов, а количество образующихся ТГМ при прочих равных условиях тем больше, чем выше рН воды. Для устранения примесей требуется доочистка воды на угольных фильтрах. В настоящее время предельно допустимые концентрации для веществ, являющихся побочными продуктами хлорирования, установлены в различных развитых странах в пределах от 0,06 до 0,2 мг/л и соответствуют современным научным представлениям о степени их опасности для здоровья.

Для хлорирования воды используются такие вещества как собственно хлор (жидкий или газообразный), диоксид хлора и другие хлорсодержащие вещества.

Хлор является наиболее распространённым из всех веществ, используемых для обеззараживания питьевой воды. Это объясняется высокой эффективностью, простотой используемого технологического оборудования, дешевизной применяемого реагента – жидкого или газообразного хлора – и относительной простотой обслуживания.

Очень важным и ценным качеством использования хлора является его последействие. Если количество хлора взято с некоторым расчетным избытком, так чтобы после прохождения очистных сооружений в воде содержалось 0,3–0,5 мг/л остаточного хлора, то не происходит вторичного роста микроорганизмов в воде.

Однако, хлор является сильнодействующим токсическим веществом, требующим соблюдения специальных мер по обеспечению безопасности при его транспортировке, хранении и использовании; мер по предупреждению катастрофических последствий в чрезвычайных аварийных ситуациях. Поэтому ведется постоянный поиск реагентов, сочетающих положительные качества хлора и не имеющих его недостатков.

Одновременно с обеззараживанием воды протекают реакции окисления органических соединений, при которых в воде образуются хлорорганические соединения, обладающие высокой токсичностью, мутагенностью и канцерогенностью. Последующая очистка воды на активном угле не всегда может удалить эти соединения. Кроме того, что эти хлорорганические соединения, обладающие высокой стойкостью, становятся загрязнителями питьевой воды, они, пройдя через систему водоснабжения и канализации, вызывают загрязнение рек вниз по течению.

Присутствие в воде побочных соединений – один из недостатков использования в качестве дезинфектанта газообразного, а равно и жидкого хлора (Cl2).

2.1.2 Диоксид хлора

В настоящее время для обеззараживания питьевой воды также предлагается применение диоксида хлора (ClO2), который обладает рядом преимуществ, таких как: более высокое бактерицидное и дезодорирующее действие, отсутствие в продуктах обработки хлорорганических соединений, улучшение органолептических качеств воды, отсутствие необходимости перевозки жидкого хлора. Однако диоксид хлора дорог и должен производиться на месте по достаточно сложной технологии. Его применение имеет перспективу для установок относительно небольшой производительности.

Действие на болезнетворную флору ClО2 обусловлено не только высоким содержанием при реакции высвобождающегося хлора, но и образующимся атомарным кислородом. Именно это сочетание делает диоксид хлора более сильным обеззараживающим агентом. Кроме того, он не ухудшает вкус и запах воды. Сдерживающим фактором в использовании данного дезинфектанта до последнего времени была повышенная взрывоопасность, осложнявшая его производство, транспортировку и хранение. Однако современные технологии позволяют устранить этот недостаток за счет производства диоксида хлора непосредственно на месте применения.

2.1.3 Гипохлорит натрия

Технология применения гипохлорита натрия (NaClO) основана на его способности распадаться в воде с образованием диоксида хлора. Применение концентрированного гипохлорита натрия на треть снижает вторичное загрязнение, в сравнении с использованием газообразного хлора. Кроме того, транспортировка и хранение концентрированного раствора NaClO достаточно просты и не требуют повышенных мер безопасности. Также получение гипохлорита натрия возможно и непосредственно на месте, путем электролиза. Электролитический метод характеризуют малые затраты и безопасность; реагент легко дозируется, что позволяет автоматизировать процесс обеззараживания воды.

Применение для обеззараживания воды хлорсодержащих реагентов (хлорной извести, гипохлоритов натрия и кальция) менее опасно в обслуживании и не требует сложных технологических решений. Правда, используемое при этом реагентное хозяйство более громоздко, что связано с необходимостью хранения больших количеств препаратов (в 3–5 раз больше, чем при использовании хлора). Во столько же раз увеличивается объем перевозок. При хранении происходит частичное разложение реагентов с уменьшением содержания хлора. Остается необходимость устройства системы притяжно-вытяжной вентиляции и соблюдения мер безопасности для обслуживающего персонала. Растворы хлорсодержаших реагентов коррозионно-активны и требуют оборудования и трубопроводов из нержавеющих материалов или с антикоррозийным покрытием.

Все большее распространение, особенно на небольших станциях водоподготовки, приобретают установки по производству активных хлорсодержаших реагентов электрохимическими методами. В России несколько предприятий предлагают установки типа «Санер», «Санатор», «Хлорэл-200» для производства гипохлорита натрия методом диафрагменного электролиза поваренной соли.

питьевой водоснабжение обеззараживание

2.2 Озонирование

Преимущество озона (О3) перед другими дезинфектантами заключается в присущих ему дезинфицирующих и окислительных свойствах, обусловленных выделением при контакте с органическими объектами активного атомарного кислорода, разрушающего ферментные системы микробных клеток и окисляющего некоторые соединения, которые придают воде неприятный запах (например, гуминовые основания). Кроме уникальной способности уничтожения бактерий, озон обладает высокой эффективностью в уничтожении спор, цист и многих других патогенных микробов. Исторически применение озона началось еще в 1898 г. во Франции, где впервые были созданы опытно-промышленные установки по подготовке питьевой воды.

Количество озона, необходимое для обеззараживания питьевой воды, зависит от степени загрязнения воды и составляет 1–6 мг/л при контакте в 8–15 мин; количество остаточного озона должно составлять не более 0,3–0,5 мг/л, т. к. более высокая доза придает воде специфический запах и вызывает коррозию водопроводных труб.

С гигиенической точки зрения озонирование воды – один из лучших способов обеззараживания питьевой воды. При высокой степени обеззараживания воды оно обеспечивает ее наилучшие органолептические показатели и отсутствие высокотоксичных и канцерогенных продуктов в очищенной воде.

Ограничениями для распространения технологии озонирования являются высокая стоимость оборудования, большой расход электроэнергии, значительные производственные расходы, а также необходимость высококвалифицированного оборудования. Последний факт обусловил использование озона лишь при централизованном водоснабжении. Кроме того, в процессе эксплуатации установлено, что в ряде случаев (если температура обрабатываемой природной воды превышает 22 °С) озонирование не позволяет достичь требуемых микробиологических показателей по причине отсутствия эффекта пролонгации дезинфицирующего воздействия

Метод озонирования воды технически сложен и наиболее дорогостоящ среди других методов обеззараживания питьевой воды.. Технологический процесс включает последовательные стадии очистки воздуха, его охлаждения и осушки, синтеза озона, смешения озоновоздушной смеси с обрабатываемой водой, отвода и деструкции остаточной озоновоздушной смеси, вывода ее в атмосферу. Все это ограничивает использование данного метода в повседневной жизни.

Другим существенным недостатком озонирования явялется токсичность озона. Предельно допустимое содержание этого газа в воздухе производственных помещений – 0,1 г/м3. К тому же существует опасность взрыва озоновоздушной смеси.

Существующие конструкции современных озонаторов представляют собой большое количество близко расположенных ячеек, образованных электродами, один из которых находится под высоким напряжением, а второй – заземлен. Между электродами с определенной периодичностью возникает электрический разряд, в результате которого в зоне действия ячеек из воздуха образуется озон. Полученной озоновоздушной смесью барботируют обрабатываемую воду. Подготовленная таким образом вода по вкусу, запаху и другим свойствам превосходит воду, обработанную хлором.

2.3 Другие реагентные способы дезинфекции воды

Применение тяжелых металлов (медь, серебро и др.) для обеззараживания питьевой воды основано на использовании их «олигодинамического» свойства – способности оказывать бактерицидное действие в малых концентрациях. Эти металлы могут вводиться в виде растворов солей либо методом электрохимического растворения. В обоих этих случаях возможен косвенный контроль их содержания в воде. Следует заметить, что ПДК ионов серебра и меди в питьевой воде достаточно жесткие, а требования к воде, сбрасываемой в рыбохозяйственные водоемы, еще выше.

К химическим способам обеззараживания питьевой воды относится также широко применявшееся в начале 20 в. обеззараживание соединениями брома и йода, обладающими более выраженными бактерицидными свойствами, чем хлор, но требующими и более сложной технологии. В современной практике для обеззараживания питьевой воды йодированием предлагается использовать специальные иониты, насыщенные йодом. При пропускании через них воды йод постепенно вымывается из ионита, обеспечивая необходимую дозу в воде. Такое решение приемлемо для малогабаритных индивидуальных установок. Существенным недостатком является изменение концентрации йода во время работы и отсутствие постоянного контроля его концентрации.

Применение активных углей и катионитов, насыщенных серебром, например, С-100 Ag или С-150 Ag фирмы « Purolite », преследует цели не «серебрения» воды, а предотвращения развития микроорганизмов при прекращении движения воды. При остановках создаются идеальные условиях для их размножения – большое количество органики, задержанное на поверхности частиц, их огромная площадь и повышенная температура. Наличие серебра в структуре этих частиц резко уменьшает вероятность обсеменения слоя загрузки. Серебросодержащие катиониты разработки ОАО НИИПМ – КУ-23СМ и КУ-23СП – содержат в себе значительно большее количество серебра и предназначены для обеззараживания воды в установках небольшой производительности.

3.1 Кипячение

Из физических способов обеззараживания воды наиболее распространенным и надежным (в частности, в домашних условиях) является кипячение.

При кипячении происходит уничтожение большинства бактерий, вирусов, бактериофагов, антибиотиков и других биологических объектов, которые часто содержатся в открытых водоисточниках, а как следствие и в системах центрального водоснабжения.

Кроме того, при кипячении воды удаляются растворенные в ней газы и уменьшается жесткость. Вкусовые качества воды при кипячении меняются мало. Правда для надежной дезинфекции рекомендуется кипятить воду в течение 15 – 20 минут, т.к. при кратковременном кипячении некоторые микроорганизмы, их споры, яйца гельминтов могут сохранить жизнеспособность (особенно если микроорганизмы адсорбированы на твердых частицах). Однако применение кипячения в промышленных масштабах, конечно же, не представляется возможным ввиду высокой стоимости метода.

3.2 Ультрафиолетовое излучение

Обработка УФ-излучением – перспективный промышленный способ дезинфекции воды. При этом применяется свет с длиной волны 254 нм (или близкой к ней), который называют бактерицидным. Дезинфицирующие свойства такого света обусловлены их действием на клеточный обмен и особенно на ферментные системы бактериальной клетки. При этом бактерицидный свет уничтожает не только вегетативные, но и споровые формы бактерий.

Современные установки УФ-обеззараживания имеют производительность от 1 до 50 000 м3/ч и представляют собой выполненную из нержавеющей стали камеру с размещенными внутри УФ-лампами, защищенными от контакта с водой прозрачными кварцевыми чехлами. Вода, проходя через камеру обеззараживания, непрерывно подвергается облучению ультрафиолетом, который убивает все находящиеся в ней микроорганизмы. Наибольший эффект обеззараживания питьевой воды достигается при расположении УФ-установок после всех других систем очистки, как можно ближе к месту конечного потребления.

Этот способ приемлем как в качестве альтернативы, так и дополнения к традиционным средствам дезинфекции, поскольку абсолютно безопасен и эффективен.

Важно отметить, что в отличие от окислительных способов при УФ-облучении не образуются вторичные токсины, и поэтому верхнего порога дозы ультрафиолетового облучения не существует. Увеличением дозы почти всегда можно добиться желаемого уровня обеззараживания.

Кроме того УФ-облучение не ухудшает органолептические свойства воды, поэтому может быть отнесено к экологически чистым методам ее обработки.

Вместе с тем, и этот способ имеет определенные недостатки. Подобно озонированию, УФ-обработка не обеспечивает пролонгированного действия. Именно отсутствие последействия делает проблематичным ее применение в случаях, когда временной интервал между воздействием на воду и ее потреблением достаточно велик, например в случае централизованного водоснабжения. Для индивидуального водоснабжения УФ-установки являются наиболее привлекательными.

Кроме того, возможны реактивация микроорганизмов и даже выработка новых штаммов, устойчивых к лучевому поражению.

Этот способ требует строжайшего соблюдения технологии,

Организация процесса УФ-обеззараживания требует больших капитальных вложений, чем хлорирование, но меньших, чем озонирование. Более низкие эксплуатационные расходы делают УФ-обеззараживание и хлорирование сопоставимыми в экономическом плане. Расход электроэнергии незначителен, а стоимость ежегодной замены ламп составляет не более 10% от цены установки.

Фактором, снижающим эффективность работы установок УФ-обеззараживания при длительной эксплуатации, является загрязнение кварцевых чехлов ламп отложениями органического и минерального состава. Крупные установки снабжаются автоматической системой очистки, осуществляющей промывку путем циркуляции через установку воды с добавлением пищевых кислот. В остальных случаях применяется механическая очистка.

Другим фактором, снижающим эффективность УФ-обеззараживания, является мутность исходной воды. Рассеивание лучей значительно ухудшает эффективность обработки воды.

3.3 Электроимпульсный способ

Достаточно новым способом обеззараживания воды является электроимпульсный способ – использование импульсивных электрических разрядов (ИЭР).

Сущность метода заключается в возникновении электрогидравлического удара, так называемого эффекта Л. А. Юткина.

Технологический процесс состоит из шести ступеней:

подача жидкости в рабочий объём при равномерном профиле распределения скорости (причём рабочий объём заполняют с воздушным промежутком, а равномерный профиль распределения жидкости помогает уменьшить энергоёмкость процесса),

зарядку накопителя электроэнергии в режиме постоянной мощности,

инициирование одного или серии электрических разрядов в жидкости при скорости нарастания переднего фронта напряжения не менее 1010 В/с (энергию дозируют путём отсчёта зарядов),

усиление эффекта разрушения микроорганизмов за счет формирования волн растяжения при отражении волн сжатия, образованных электрическим разрядом от свободной поверхности жидкости,

подавление или гашение ударных волн в подводящих и отводящих жидкость магистралях для исключения их разрушения,

отведение обеззараженной жидкости из рабочего объёма.

Кроме того, в частном случае возможно инициирование электрических разрядов в объеме, отделенном от рабочего объема средой, сохраняющей или увеличивающей амплитуду волн сжатия. Примером материала, являющегося средой, сохраняющей амплитуду волны на границе с водой, может быть пенополистирол.

В процессе обеззараживания питьевой воды электроимпульсным способом происходит большое количество явлений: мощные гидравлические процессы, образование ударных волн сверхвысокого давления, образование озона, явления кавитации, интенсивные ультразвуковые колебания, возникновение импульсивных магнетических и электрических полей, повышение температуры. Результатом всех этих явлений является уничтожение в воде практически всех патогенных микроорганизмов. Очень важно заметить, что вода, обработанная ИЭР, приобретает бактерицидные свойства, которые сохраняются до 4 мес.

Основным преимуществом электроимпульсного способа обеззараживания питьевой воды является экологическая чистота, а так же возможность использования в больших объемах жидкости.

Однако этот способ имеет ряд недостатков, в частности относительно высокую энергоемкость (0,2-1 кВтч/м3) и, как следствие – дороговизну.

Электрохимический метод.

Серийно производятся установки «Изумруд», «Сапфир», «Аквамин» и т.п. Их работа основана на пропускании воды через электрохимический диафрагменный реактор, разделенный ультрафильтрационной металлокерамической мембраной на катодную и анодную область. При подаче постоянного тока в катодной и анодной камерах происходит образование щелочного и кислого растворов, электролитическое образование активного хлора. В этих средах гибнут практически все микроорганизмы и происходит частичное разрушение органических загрязнений. Конструкция проточного электрохимического элемента хорошо отработана, и набором из различного числа таких элементов получают установки заданной производительности.

3.4 Обеззараживание ультразвуком

В некоторых случаях для обеззараживания воды используется ультразвук. Впервые этот метод был предложен в 1928 г. Механизм действия ультразвука до конца неясен. По этому поводу высказываются следующие предположения:

Ультразвук вызывает образование пустот в сильно завихренном пространстве, что ведет к разрыву клеточной стенки бактерии;

Ультразвук вызывает выделение растворенного в жидкости газа, а пузырьки газа, находящиеся в бактериальной клетке, вызывают ее разрыв.

Преимуществом использования ультразвука перед многими другими средствамиобеззараживания сточных водслужит его нечувствительность к таким факторам, как высокая мутность и цветность воды, характер и количество микроорганизмов, а также наличие в воде растворенных веществ.

Единственный фактор, который влияет на эффективностьобеззараживания сточных вод ультразвуком - это интенсивность ультразвуковых колебаний. Ультразвук - это звуковые колебание, частота которых находится значительно выше уровня слышимости. Частота ультразвука от 20000 до 1000000 Гц, следствием чего и является его способность губительным образом сказываться на состоянии микроорганизмов. Бактерицидное действие ультразвука разной частоты весьма значительно и зависит от интенсивности звуковых колебаний.

Обеззараживание и очистка водыультразвуком считается одним из новейших методов дезинфекции. Ультразвуковое воздействие на потенциально опасные микроорганизмы не часто применяется в фильтрахобеззараживания питьевой воды, однако его высокая эффективность позволяет говорить о перспективности этого метода обеззараживания воды, не смотря на его дороговизну.

3.5 Радиационное обеззараживание

Имеются предложения использования для обеззараживания воды гамма-излучения.

Гамма-установки типа РХУНД работают по следующей схеме: вода поступает в полость сетчатого цилиндра приёмно-разделительного аппарата, где твёрдые включения увлекаются вверх шнеком, отжимаются в диффузоре и направляются в бункер – сборник. Затем вода разбавляется условно чистой водой до определённой концентрации и подаётся в аппарат гамма-установки, в котором под действием гамма излучения изотопа Со60 происходит процесс обеззараживания.

Гамма-излучение оказывает угнетающее действие на активность микробных дегидраз (ферментов). При больших дозах гамма-излучения погибает большинство возбудителей таких опасных заболеваний как тиф, полиомиелит и др.

3.6 Другие физические методы

К физико-химическим методам обеззараживания воды следует отнести использование с этой целью ионообменных смол. G.Gillissen (1960) показал способность анионообменных смол освобождать жидкость от бактерий группы соli. Возможна регенерация смолы. У нас Е.В.Штанников (1965) установил возможность очистки воды от вирусов ионообменными полимерами. По мнению автора этот эффект связан как с сорбцией вируса, так и с его денатурацией за счет кислотной или особенно щелочной реакции. В другой работе Штанникова указывается на возможность обеззараживания воды ионактивными полимерами, где находится токсин ботулизма. Обеззараживание происходит за счет окисления токсина и его сорбции.

Помимо указанных выше физических факторов изучалась возможность обеззараживания воды токами высокой частоты, магнитной обработкой.

Во многих случаях наиболее эффективным оказывается комплексное применение реагентных и безреагентных методов обеззараживания воды. Сочетание УФ-обеззараживания с последующим хлорированием малыми дозами обеспечивает как высочайшую степень очистки, так и отсутствие вторичного биозагрязнения воды. Так, обработкой воды бассейнов УФ-облучением в сочетании с хлорированием достигается не только высокая степень обеззараживания, снижение пороговой концентрации хлора в воде, но и, как следствие, существенная экономия средств на расходе хлора и улучшение обстановки в самом бассейне.

Аналогично распространяется использование озонирования, при котором уничтожается микрофлора и часть органических загрязнений, с последующим щадящим хлорированием, обеспечивающим отсутствие вторичного биозагрязнения воды. При этом резко сокращается образование токсичных хлорорганических веществ.

Поскольку все микроорганизмы характеризуются определенными размерами, пропуская воду через фильтрующую перегородку с размерами пор меньшими, чем микроорганизмы, можно полностью очистить от них воду. Так, фильтрующие элементы, имеющие размер пор менее 1 микрона, согласно действующим ТИ 10-5031536-73-10 на безалкогольную продукцию, считаются обеспложивающими, т. е. стерилизующими. Хотя при этом из воды удаляются только бактерии, но не вирусы. Для более «тонких» процессов, когда недопустимо присутствие любых микроорганизмов, например, в микроэлектронике, применяют фильтры с порами размером не более 0,1–0,2 мкм.

Заключение

Защита водных ресурсов от истощения и загрязнения и их рациональное использование для нужд народного хозяйства – одна из наиболее важных проблем, требующих безотлагательного решения.

Предприятия, осуществляющие забор воды из водоисточников, ее очистку, по уровню решаемых задач и обороту денежных средств занимают одно из ведущих мест в регионе. А стало быть эффективность использования материальных ресурсов в данной отрасли так или иначе сказывается на общем уровне благосостояния и здоровья людей, проживающих на данной территории. Рациональное, т.е. организованное с соблюдением санитарных правил и нормативов, питьевое водоснабжение помогает избегать различных эпидемий, кишечных инфекций. Химический состав питьевой воды также немаловажен для здоровья человека.

В современных условиях обеззараживание стало чуть ли не единственным обязательным процессом в многоступенчатой системе очистки воды питьевого водоснабжения. Коагулирование и фильтрование воды через песок освобождают ее от суспендированных примесей и частично снижают ее бактериальную загрязненность. Но только обеззараживанием воды можно на 98% очистить воду от патогенных (болезнетворных) микроорганизмов.

Постоянное совершенствование методов и средств, с помощью которых осуществляется дезинфекция, вызвано двумя факторами: развитием у микроорганизмов резистентности не только к антибиотикам, но и дезинфицирующим средствам, а также несовершенством используемых дезинфицирующих средств. Следует учитывать и то, что возможно и вторичное загрязнение уже подготовленной воды при транспортировке её по трубам распределительной сети.

В связи с этим поиск и внедрение наиболее рационального способа обеззараживания воды из проблемы актуальной переходит в раздел социально значимых.

Постоянное совершенствование дезинфицирующих средств приведёт к созданию новых, эффективных и безопасных соединений. Уже сейчас разрабатываются новые дезинфицирующие средства на основе таких традиционных групп химических соединений, как спирты, альдегиды, фенолы, перекиси, ПАВ и хлорсодержащие вещества. Кроме того, постоянно разрабатывается возможность их соединения для создания композитного дезинфицирующего средства.

Обеззараживание является заключительным этапом подготовки воды питьевой кондиции и должно обеспечивать эпидемиологическую безопасность населения.

Питьевая вода – это важнейший фактор здоровья и благополучия человека.

Мировой и отечественный опыт доказывает, что при использовании передовых технологий и оборудования качество воды (практически независимо от исходных ее характеристик) начинает соответствовать самым строгим нормативным требованиям. Это позволяет не только эффективно использовать естественные источники, но и успешно применять схемы рециркуляции. Такой подход, несомненно, поможет снизить антропогенную нагрузку с окружающей среды и сберечь ее для потомков.

Проблема обеззараживания воды стоит сегодня тем более остро, что качество ее в природных источниках неуклонно ухудшается. В государственном докладе «Вода питьевая» отмечено, что около 70 % рек и озер страны утратили свое качество как источники водоснабжения, а приблизительно 30 % подземных источников подверглись природному или антропогенному загрязнению. Около 22 % проб питьевой воды, отбираемых из водопроводов, не отвечают гигиеническим требованиям по санитарно-химическим нормам, а более 12 % – по микробиологическим показателям.

Список литературы

1. Водоснабжение. Проектирование систем и сооружений: В 3-х т. – Т. 2. Очистка и кондиционирование природных вод / Научно-методическое руководство и общая редактора докт. техн. наук, проф. Журбы М.Г. Вологда-Москва: ВоГТУ, 2001. – 324 с.

2. Мазаев В.Т., Корлёв А.А., Шлепнина Т.Г. Коммунальная гигиена / Под ред. В.Т. Мазаева. – 2-е изд., испр. и доп. – М.: ГЭОТАР-Медиа, 2005. – 304 с.

3. Яковлев С.В, Воронов Ю.В. Водоотведение и очистка сточных вод / Учебник для вузов: – М.: АСВ, 2002 – 704 с.

Методы обеззараживания воды классифицируются на физические (нереагентные) и химические (реагентные).

Нереагентные методы обеззараживания воды: кипячение, обработка ультрафиолетовым (УФ) излучением, гамма-лучами, ультразвуком, электрическим током высокой частоты и пр. Нереагентные методы имеют преимущества, поскольку не приводят к образованию в воде остаточных вредных веществ.

Кипячение в течение 30 мин. применяется при местном водоснабжении вызывает на только гибель вегетативных форм, которая наступает уже при 80 0 С в течение 30 сек., но и спор микроорганизмов.

Обеззараживание воды коротковолновым УФ-излучением (l=250-260 нм) за счет фотохимического расщепления белковых компонентов мембран бактериальных клеток, вибрионов и яиц гельминтов вызывает быструю гибель вегетативных форм и спор микроорганизмов, вирусов и яиц гельминтов, устойчивых к хлору. Ограничение - метод не используется для воды с высокой мутностью, цветностью и содержащей соли железа.

Реагентные методы обеззараживания воды: обработка ионами серебра, озонирование, хлорирование.

Обработка ионами серебра приводит к инактивации ферментов протоплазмы бактериальных клеток, потери способности к размножению и постепенной гибели. Серебрение воды может осуществляться разными способами: фильтрацией воды через песок, обработанный солями серебра; электролизом воды с серебряным анодом в течение 2-х часов, что ведет к переходу катионов серебра в воду. Преимуществом метода является долгое хранение посеребренной воды. Ограничение - метод не используется для воды с большим содержанием взвешенных органических веществ и ионов хлора.

Озонирование основано на окислении органических веществ и других загрязнений воды озоном О 3 - аллотропной модификацией кислорода, обладающим более высоким окислительным потенциалом и в 15 раз большей растворимостью. Озон в большей степени расходуется на окисление органических и легко окисляющихся неорганических веществ, чем обеззараживание. Время, необходимое для обеззараживания озоном, составляет 1-2 мин. Применяемая доза озона составляет 0,5-0,6 мг/л. Обязательным условием озонирования является создание остаточного количества озона в воде (0,1-0,3 мг/л) для предотвращения роста и размножения патогенных микроорганизмов. Преимуществом метода является отсутствие остаточных веществ, дезодорирование воды, удаление цветности, короткое время реакции и уничтожение вирусов. Однако метод требует дешевых источников электроэнергии, поскольку озоновоздушную смесь получают при помощи энергоёмкого процесса - "тихого" электрического разряда на озонаторе.

Хлорирование – наиболее доступный и дешевый способ обеззараживания. Хлорирующие агенты делят на 2 класса: 1) анион Cl - (газообразный Cl 2 , хлорамин, хлорамины Б и Т, дихлорамины Б или Т); 2) т.н. "активный хлор" - гипохлорит-ион = анион ClO - [гипохлорит кальция Ca(OCl) 2 , гипохлорит натрия NaOCl, хлорная известь – смесь гипохлорита кальция, хлорида кальция, гидроокиси кальция и воды]. Бактерицидный эффект объясняется действием хлорноватистой кислоты, образующейся по реакции Cl 2 + H 2 O ® HOCl + HCl; активного хлора: HOCl ® OCl - + H + и хлористой кислоты НСlO 2 . Механизм обеззараживания связан с взаимодействием активных веществ с SH-белками клеточной оболочки бактерий. Недостатки метода: при хлорировании споры сибирской язвы, возбудители туберкулеза, яйца и личинки гельминтов, цисты амебы и риккетсии Бернета остаются жизнеспособными.


Обеззараживание воды хлорированием требует предварительного экспериментального определения концентрации активного хлора в хлорирующем препарате (в норме 25-35%) и хлорпоглощаемости воды, которая зависит от степени загрязнения воды органическими веществами и микроорганизмами, на окисление и обеззараживание которых расходуется хлор.

Условиями эффективного хлорирования являются соблюдение продолжительности контакта хлор-агента с водой и ее компонентами (30 мин. в теплый и жаркий период года, 60 мин. – в холодный); создание остаточного хлора 0,3-0,5 мг/л. Хлорпоглощаемость воды и концентрация остаточного хлора в сумме представляют собой хлорпотребность воды.

Ограничение применения обеззараживания воды препаратами, содержащими «активный хлор», касается воды, загрязненной промышленными сточными водами с содержанием фенола и других ароматических соединений, что требует «постпереломного» хлорирования, ведущего к образованию хлордиоксинов - веществ, обладающих высокой токсичностью и кумулятивностью в организме человека. Признаком их образования является сильный «аптечный» запах воды. Для предотвращения образования хлордиоксидов при хлорировании загрязненной промышленными стоками воды применяют газообразный хлор с преаммонизацией (предварительной обработкой воды аммиаком).

При невозможности экспериментального определения хлорпоглощаемости воды используют метод перехлорирования . Перехлорирование проводят избыточными дозами хлорирующего препарата (обычно в непроточной воде ограниченного объема). При выборе дозы активного хлора учитывают тип и степень загрязненности воды в источнике водоснабжения и эпидемическую ситуацию на территории сбора воды в используемый источник (обычно доза колеблется в пределах 10-20 мг активного хлора на 1 литр воды).