Контроль стыковых соединений в паропроводах и котлах. Какой толщины выбрать стальную трубу Подготовка к пуску паропровода

1. Общее описание предприятия, основного и вспомогательного оборудования КВД-1

трубопровод котел пароперегреватель

Производственное объединение "Северное машиностроительное предприятие" - российское машиностроительное предприятие оборонного комплекса, расположенное в городе Северодвинске Архангельской области. Предприятие вело и ведёт успешное строительство российских военных кораблей и атомных подводных лодок, осуществляет ремонт крупных надводных кораблей для РФ и других стран (Индия, Китай, Вьетнам), активно участвует в проектах по созданию российской морской техники, российской нефтегазовой индустрии.


.1 Котельная высокого давления


Котельная высокого давления (КВД) включает в себя котлоагрегаты и все устройства необходимые для обеспечения нормальной работы котлов.

Для производства перегретого пара в котельной высокого давления установлены 3 водотрубных котла с естественной циркуляцией типа КВ-76. Перегретый пар транспортируется по паропроводам на набережную №1 "ПО "Севмаш".


1.2 Топливное хозяйство


Топливное хозяйство - это комплекс технологически связанных устройств, механизмов и сооружений, служащих для подготовки и подачи топлива в котельную. Комплекс выполняется в виде непрерывной технологической линии, началом которой является приемо-разгрузочное устройство, а концом - главное здание, куда подается подготовленное топливо. Подача топлива совмещается с различными этапами его подготовки, а также операциями складирования, взвешивания, отбора проб. Совокупность всех операций именуется переработкой топлива.

Для подачи и подготовки топлива к сжиганию предназначена топливная система парового котла с топочными устройствами и воздухоподводящей системой. Топливная и воздухоподводящая система парового котла показана на рисунке 1.


Рисунок 1 - Топливная и воздухоподводящая система парового котла


Топливная система включает в себя расходную цистерну 1, фильтры 2, 5 холодной и горячей очистки топлива, подогреватели топлива 4, 6, шестеренчатый насос 3, забирающий топливо из расходной цистерны и подающий его через фильтры, подогреватели к топочным устройствам (форсункам) 8. Необходимый для сгорания топлива воздух подается в топку котла котельным вентилятором 7. Образующиеся при сгорании топлива дымовые газы, отдав теплоту в поверхностях нагрева котла 9, удаляются через газоход 10 в дымовую трубу.


1.3 Котел типа КВ-76


Котел вертикально-водотрубный с естественной циркуляцией воды, вертикальным двухколлекторным пароперегревателем, с дутьём непосредственно в топку, с водяным плавниковым экономайзером.

-Рабочее давление - 6,4 МПа

-Максимальная температура пара на выходе - 450 оС

-Производительность котла - 80 т/ч

Отопление котла двухстороннее, с форсунками механического распыливания. Котельный агрегат состоит из испарительной части (котла) и пароперегревателя, соединенных между собой пароперепускной трубой и с компонованных совместно с топочной камерой в общем обшивочном кожухе.


1.4 Устройство котла КВ-76


Водотрубный котел с естественной циркуляцией показан на рисунке 2


Рисунок 2 - Водотрубный котел с естественной циркуляцией

Пароводяной коллектор; 2 - опускные необогреваемые трубы; 3,7 - парообразующие трубы; 4 - топка котла; 5 - топочное устройство; 6 - водяной коллектор; 8 - трубопровод к потребителю; 9 - пучок труб пароперегревателя; 10 - направление движения газов в газоходе; 11 - трубопровод питательной воды; 12 - трубопровод экономайзера; 13 - трубки воздухоподогревателя; 14 - подвод воздуха к воздухоподогревателю; 15 - дымовая труба; 16 - подвод воздуха к топочному устройству; 17 - пароперепускная труба.


1.5 Принцип действия котла


При факельном сжигании топлива образуются продукты сгорания (дымовые газы), имеющие высокую температуру. В топке передача теплоты парообразующим трубам осуществляется в основном тепловым излучением от высокотемпературного факела, а в газоходе котла - тепловой конвекцией от движущихся через основную и дополнительную поверхности нагрева дымовых газов. Охлажденные дымовые газы поступают в дымовую трубу.

Питательная вода нагнетается питательным насосом по трубопроводу 11 в экономайзер, где подогревается по температуры на 20-30 оС ниже температуры кипения. Оттуда она направляется в водную часть коллектора 1, смешивается с котловой водой и по опускным трубам 2 движется к водяному коллектору 6, из которого поступает в парообразующие трубы 3, 7. Ряд труб 3, защищающих от облучения факелом опускные трубы 2, называется экраном. Первые ряды пучка 7 и экрана воспринимают теплоту излучения газов в топке, а поверхности труб 7, 9, 12, 13 - теплоту, передаваемую конвекцией от движущихся газов. Внутри труб 3 и 7 происходит процесс парообразования, появившаяся при этом пароводяная смесь поступает в коллектор 1. Образовавшийся в циркуляционном контуре пар, пройдя водяную часть коллектора 1, скапливается в его паровой зоне, откуда по перепускной трубе 17 направляется в верхний коллектор пароперегревателя 9, а вода, смешиваясь с питательной водой, вновь поступает по опускным трубам 2 к коллектору 6.

Вода и пароводяная смесь движутся по замкнутому контуру: пароводяной коллектор - опускные трубы - водяной коллектор - парообразующие трубы - пароводяной коллектор. Это движение происходит за счет разности веса воды и пароводяной смеси в трубах и называется естественной циркуляцией. Совокупность элементов котла, в которых осуществляется замкнутое движение воды и пароводяной смеси, называют контуром циркуляции. У котла, показанного на рисунке 2, только один контур циркуляции. Однако котлы могут иметь несколько таких контуров.

В пароводяном коллекторе 1 циркуляционного контура котла размещаются сепарирующие устройства, поэтому пар, направляемый в пароперегреватель, имеет степень сухости близкую к единице. В пароперегревателе 9 пар подсушивается и перегревается. Перегретый пар через главный стопорный клапан направляется к потребителю по трубопроводу 8.


1.6 Аварийная остановка котла


Котел должен быть немедленно остановлен и отключен действием защит или персоналом в случаях, предусмотренных инструкцией, и в частности в случаях:

-обнаружения неисправности предохранительного клапана

-если давление в барабане котла поднялось выше разрешенного на 10%

-снижения уровня воды ниже низшего допустимого уровня

-повышения уровня воды выше допустимого уровня

-прекращения действия всех питательных насосов

-прекращения действия всех указателей уровня воды прямого действия

-если в основных элементах котла (барабане, коллекторе, пароперепускных и водоопускных трубах, паровых и питательных трубопроводах, трубной решетке, кожухе топки и т.д.) будут обнаружены трещины, выпучины, пропуски в их сварных швах

-погасания факелов в топке при камерном сжигании топлива

-повышения температуры воды на выходе из водогрейного котла

-неисправности автоматики безопасности

-возникновения в котельной пожара, угрожающего обслуживающему персоналу


1.7 Пароперегреватели


Пароперегреватели служат для перегрева пара, т. е. для получения пара, температура которого превышает температуру насыщения при давлении в котле. Использование в энергетической установке перегретого пара вместо насыщенного увеличивает КПД на 10-15%, а с повышением температуры перегрева пара на 20-25 оС КПД установки возрастает на 1-1,5%. Поэтому пароперегреватели являются обязательной составной частью не только главных, но и вспомогательных котлов.

В пароперегревателе из пароводяного коллектора поступает влажный насыщенный пар, который, проходя внутри труб, омываемых дымовыми газами, сначала подсушивается, а затем перегревается. Для большего перегрева пара пароперегреватели размещают в высокотемпературной зоне газохода котла.


1.8 Водяные экономайзеры


Водяные экономайзеры предназначены для подогрева питательной воды, поступающей в котел, теплотой дымовых газов. Их устанавливают в низкотемпературной зоне котла. Подогрев воды в водяном экономайзере на один градус вызывает охлаждение газов на 2,5 - 3 оС, что способствует росту КПД котла. Кроме того, наличие водяного экономайзера способствует снижению размеров парообразующей поверхности нагрева котла, его массы и габаритов.


1.9 Воздухоподогреватели


Воздухоподогреватели применяют для подогрева, поступающего от котельного вентилятора. В качестве горячего теплоносителя используют дымовые газы, отработавший пар или воду. Подача в топку горячего воздуха улучшает топочный процесс, способствует повышению температуры газа в топке и газоходе котла. Использование воздухоподогревателей модет увеличить КПД котла на 3-5%. Схема газового трубчатого воздухоподогревателя изображена на рисунке 3.


Рисунок 3 - Конструктивная схема газового трубчатого воздухоподогревателя


Дымовые газы 1 омывают трубы 5 изнутри, а воздух (стрелка 4) движется в межтрубном пространстве и омывает трубы воздухоподогревателя снаружи. Трубы крепят к трубным решеткам 3 с помощью сварки. Для обеспечения перемещения труб при тепловом расширении предусмотрена установка компенсатора 2. При эксплуатации сажистые и золовые отложения в таких воздухоподогревателях появляются на внутренней поверхности труб, которую периодически очищают сажеобдувочными устройствами.


1.10 Опоры


Для установки и надежного закрепления котла служат фундаменты. На фундаменты котел устанавливают на опорах. Количество опор зависит от габаритов и массы котла. Одна опора делается неподвижной, остальные - подвижными. Они обеспечивают свободу температурных расширений котла.


2. Паропроводы


Водяной пар на судне предназначен для различных целей. Например, в главных паросиловых установках он необходим для работы главных тепловых двигателей - паровых турбин, а также для нагревания воды, топлива и других сред в различных теплообменных аппаратах. На судах с дизельными и газотурбинными установками пар нужен турбогенераторам, вырабатывающим электроэнергию. Водяной пар в паровом котле образуется в результате подвода теплоты к воде. Источником теплоты служат продукты сгорания органического топлива. Паропроводы обеспечивают подачу пара высокого давления для заказов на набережной № 1.

Технические данные паропроводов:

рабочее давление - 5,8 МПа

температура перегретого пара - до 440 оС

диаметр трубопроводов: Ду - 150, Ду - 250


2.1 Подготовка к пуску паропровода


Подготовка к пуску паропровода осуществляется после получения сообщения и подтверждения от сдаточного о готовности заказа к принятию пара.

До начала прогрева паропровода персонал обязан:

-проверить состояние и обеспечить полное открытие всей спускной арматуры (дренажи № 11 - 11г)

-проверить положение всех запорных органов (задвижек и вентилей) на подлежащих прогреву участках паропровода и привести их в состояние открытия или закрытия в соответствии с программой пуска паропровода

-задвижки № 1, 1А, 2, 2А, 3, 5, 6, 7, 8, 8А, 9, 9А, 10, 13, а также воздушники № 12А-12Е должны быть закрыты. Задвижка №4 должна быть открыта

-проверить наличие и исправность контрольно измерительных приборов: манометров и термометров.


2.2 Прогрев и пуск паропровода от КВД-1 до секции №17


Прогрев и пуск паропровода на всех этапах относится к опасным работам и должен производиться по наряду -допуску, выдаваемому мастером и в соответствии с данной инструкцией бригадой не менее 3-х человек, один из которых назначается исполнителем работ.

Паропровод прогревается в 3 этапа:

этап - участок паропровода внутри КВД-1 от котла КВ-76 (№1 или №3) до задвижки 5, расположенной перед выходом паропровода из котельной

этап - от задвижки 5 до задвижек 6, 7 узла УТ-2

этап - от задвижки 7 до задвижек 8, 10 подключательного пункта секции 17

После окончания прогрева всего паропровода сообщить мастеру о готовности паропровода к пуску в работу. Для поддержания заданной температуры пара на коллекторе подключательного пункта секции №9 включить в работу охладительную установку, открыв клапан 13 на КВД-1. После получения сообщения от сдаточного механика о готовности принять пар с берега на заказ, по команде мастера открыть полностью главную задвижку (10, 10-А) на секции №9 и пустить паропровод в работу.


.3 Отключение паропровода


Вывод паропровода из действия в плановом режиме производится по распоряжению мастера

Парапровод отключать в следующем порядке:

-закрыть главную паровую задвижку (1, 1-А) на КВД-1

-после естественного снижения в паропроводе давления до 0,1 МПа открыть все дренажные и байпасные вентили (16) конденсационных горшков

-все дренажные вентили (11 - 11Г) должны оставаться открытыми до следующего прогрева и пуска паропровода

-закрыть задвижку 10 или 10-А

Паропровод должен быть немедленно остановлен при обнаружении следующих неисправностей:

Гидроудары

-если давление в паропроводе поднялось выше допустимого и не снижается, несмотря на все принимаемые меры

-если возник дефект, угрожающий безопасности эксплуатации паропровода (разрывы, трещины, свищи, сход опор или защемление трубопровода в опорах)

-выход из строя арматуры

-неисправность манометров и невозможность определить давление по другим приборам




Категория трубопроводовГруппаРабочие параметры средыТемпература, оСДавление, МПа I1 2 3 4Более 560 520 - 560 450 - 520 Менее 450Не ограничено Не ограничено Не ограничено Более 8,0II1 2350 - 450 Менее 350До 8,0 4,0 - 8,0III1 2250 - 350 Менее 250До 4,0 1,6 - 4,0IV115 - 2500,07 - 1,6


Заключение


За время прохождения производственной практики мною были рассмотрены следующие вопросы:

-приготовление воды высокой чистоты

-приготовление сорбентов

-техническое обслуживание котла КВ-76

-подача пара на заказ

Также я освоил и изучил назначение, технические данные, принцип действия топливного хозяйства, цеха химводоочистки, котла КВ-76, вспомогательного оборудования котла, испарителя ИСМ - 120. Изучил правила безопасной эксплуатации паропроводов. Ознакомился с правилами техники безопасности при работе на КВД-1 и на набережной предприятия.


Список использованных источников


1 Волков Д. И., Сударев Б. В. Судовые паровые котлы: Учебник. - Л.: Судостроение, 1988, 136 с.

Госгортехнадзор России, Правила устройства и безопасной эксплуатации трубопроводов пара и горячей воды, ПБ 10-573-03, 2003.

Теплотехнический справочник. Под общ. ред. Т 34 В. Н. Юренева и П.Д. Лебедева. В 2-х т. Т. 2. "Энергия" 1976.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Сварные соединения труб паропроводов диаметром 130 мм и более с толщиной стенок 15-60 мм выполняют чаще всего на подкладных кольцах (рис. 19), хотя в последнее время используют способ сварки без подкладных колеи с проплавлением корня шва.

Рис. 19. Схема контроля сварного соединения паропровода.

В настоящее время ультразвуковую дефектоскопию применяют как обязательный способ проверки качества этих соединений, а просвечивание проникающими излучениями - как дополнительный способ. Для контроля применяют дефектоскопы с рабочей частотой 1,8 МГц и призматические искатели с углом β=40°. При угле β=40° можно контролировать чувствительность по отражению от подкладного кольца и по положению на экране дефектоскопа легко отличать эти отражения от сигналов, связанных с дефектами.

Верхнюю часть сварного шва с толщиной стенки до 40 мм контролируют однократно отраженным лучом (рис. 19, положение Б), а нижнюю часть - двукратно отраженным лучом (положение В). Контроль производится в один прием, т е. верхняя и нижняя часть шва проверяются за одно движение искателя. Сварные швы толщиной более 40 мм контролируют в два приема: сначала проверяют корневую часть шва прямым лучом (положение А), а затем - верхнюю часть однократно отраженным лучом.

Настройка чувствительности производится по угловому отражателю площадью 5 мм 2 в тест-образце. Если проверка ведется за один проход искателя, отражатель выполняется только на внутренней стороне тест-образца, а если за два прохода, - то на внутренней и на внешней поверхностях. При поиске дефектов чувствительность увеличивается в 1,5 - 2 раза, а при исследовании дефектов чувствительность восстанавливается.

Сварные соединения, в которых не обнаружены дефекты с амплитудой эхо-сигнала больше, чем от отражателя площадью 5 мм 2 , считают годными и оценивают баллом 3. В дальнейшем учитывают дефекты только с сигналами большей амплитуды.

Сварные соединения бракуют (оценивают баллом 1) в следующих случаях:

· обнаружен хотя бы один дефект на расстоянии более 5 мм от поверхности сварного соединения Такие дефекты выявляются труднее дефектов, расположенных у поверхности;

· обнаружен дефект в корне шва, от которого амплитуда импульса или пробег его по экрану больше, чем от отражателя площадью 7 мм 2 ;

· в корне шва обнаружен одиночный дефект, условная протяженность которого превышает 10%, или ряд дефектов, суммарная условная протяженность которых превышает 20% от периметра шва.

Сварные соединения с дефектами в корне шва, амплитуда эxo-сигнала от которых больше чем от отражателя площадью 5 мм 2 , но допустимые с точки зрения изложенных выше требований, оцениваются баллом 2 и допускаются к эксплуатации, если характер отражения от них ее имеет типичных признаков отражений от трещин.

Аналогично проверяют кольцевые сварные соединения донышек с камерами коллекторов паровых котлов.

Многолетняя практика ультразвукового контроля сварных швов паропроводов и коллекторов показала надежное выявление опасных дефектов типа трещин и непроваров, поэтому контроль ведут без дублирования просвечиванием.

Ультразвуковой контроль без дублирования просвечиванием также применяют при оценке качества швов котлов паровозов при их ремонте. Прозвучиванию подвергают всю длину швов, имеющих иногда протяженность до 15 м. Внутреннюю часть шва толщиной 18 мм прозвучивают прямым лучом, а наружную часть - однократно отраженным, излучаемым искателем с углом призмы β=50°. Участки швов, в которых по данным ультразвукового контроля обнаружены дефекты с условной протяженностью 5 мм и более, подлежат вырубке, последующей заварке и контролю.

Диаметр паропровода определяется как:

Где: D – максимально потребляемое количество пара участком, кг/ч,

D= 1182,5 кг/ч (по графику работы машин и аппаратов для участка по производству творога) /68/;

- удельный объем насыщенного пара, м 3 /кг,
=0,84м 3 /кг;

- скорость движения пара в трубопроводе м/с, принимается 40м/с;

d =
=0,100 м=100 мм

К цеху подведен паропровод диаметром 100 мм, следовательно, его диаметра достаточно.

Паропроводы стальные, бесшовные, толщина стенки 2,5 мм

4.2.3. Расчет трубопровода для возврата конденсата

Диаметр трубопровода определяется по формуле:

d=
, м,

где Мк – количество конденсата, кг/ч;

Y – удельный объем конденсата, м 3 /кг, Y=0,00106 м 3 /кг;

W – скорость движения конденсата, м/с, W=1м/с.

Мк=0,6* D, кг/ч

Мк=0,6*1182,5=710 кг/ч

d=
=0,017м=17мм

Подбираем стандартный диаметр трубопровода dст=20мм.

4.2.3 Расчет изоляции тепловых сетей

С целью сокращения потерь тепловой энергии трубопроводы изолируют. Поведем расчет изоляции питающего паропровода с диаметром 110 мм.

Толщина изоляции для температуры окружающей среды 20ºС при заданной тепловой потере определяется по формуле:

, мм,

где d - диаметр неизолированного трубопровода, мм, d=100мм;

t - температура неизолированного трубопровода, ºС, t=180ºС;

λиз - коэффициент теплопроводности изоляции, Вт/м*К;

q- тепловые потери с одного погонного метра трубопровода, Вт/м.

q=0,151 кВт/м = 151 Вт/м²;

λиз=0,0696 Вт/м²*К.

В качестве изоляционного материала используется шлаковая вата.

=90 мм

Толщина изоляции не должна превышать 258 мм при диаметре труб 100 мм. Полученная δиз<258 мм.

Диаметр изолированного трубопровода составит d=200 мм.

4.2.5 Проверка экономии тепловых ресурсов

Тепловая энергия определяется по формуле:

t=180-20=160ºС

Рисунок 4.1 Схема трубопровода

Площадь трубопровода определяется по формуле:

R= 0,050 м, H= 1 м.

F=2*3,14*0,050*1=0,314м²

Коэффициент теплопередачи неизолированного трубопровода определяется по формуле:

,

где а 1 =1000 Вт/м²К, а 2 =8 Вт/м²К, λ=50 Вт/мК, δст=0,002м.

=7,93.

Q=7,93*0,314*160=398 Вт.

Коэффициент теплопроводности изолированного трубопрвода определяется по формуле:

,

где λиз=0,0696 Вт/мК.

=2,06

Площадь изолированного трубопровода определяется по формуле F=2*3,14*0,1*1=0,628м²

Q=2,06*0,628*160=206Вт.

Выполненные расчеты показали, что при использовании изоляции на паровом трубопроводе толщиной 90 мм экономиться 232 Вт тепловой энергии с 1 м трубопровода, то есть тепловая энергия расходуется рационально.

4.3 Электроснабжение

На заводе основными потребителями электроэнергии являются:

Электролампы (осветительная нагрузка);

Электроснабжение на предприятии от городской сети через трансформаторную подстанцию.

Система электроснабжения – трехфазный ток с промышленной частотой 50 Гц. Напряжение внутренней сети 380/220 В.

Расход энергии:

В час пиковой нагрузки – 750 кВт/ч;

Основные потребители энергии:

Технологическое оборудование;

Силовые установки;

Система освещения предприятия.

Распределительная сеть 380/220В от распределительных шкафов до машинных пускателей выполнена кабелем марки ЛВВР в стальных трубах, к двигательным проводам ЛВП. В качестве заземления используется нулевой провод питающей сети.

Предусматривается общее (рабочее и аварийное) и местное (ремонтное и аварийное) освещение. Местное освещение питается от понижающих трансформаторов малой мощности при напряжении 24В. Нормальное аварийное освещение питается от электрической сети на напряжении 220В. При полном исчезновении напряжении на шинах подстанции аварийное освещение питается от автономных источников («сухих аккумуляторов»), встроенных в светильники или от АГП.

Рабочее (общее) освещение предусматривается на напряжении 220В.

Светильники предусматриваются в исполнении, соответствующим характеру производства и условиям среды помещений, в которых они устанавливаются. В производственных помещениях предусматриваются с люминистцентными лампами, устанавливаемые на комплектных линиях из специальных подвесных коробов, располагаемых на высоте около 0,4м от пола.

Для эвакуационного освещения устанавливаются щитки аварийного освещения, подключаемые к другому (независимому) источнику освещения.

Производственное освещение осуществляется люминесцентными лампами и лампами накаливания.

Характеристики ламп накаливания, используемых для освещения производственных помещений:

1) 235- 240В 100Вт Цоколь Е27

2) 235- 240В 200Вт Цоколь Е27

3) 36В 60Вт Цоколь Е27

4) ЛСП 3902А 2*36 Р65ИЭК

Наименование светильников, используемых для освещения холодильных камер:

Cold Force 2*46WT26HF FO

Для уличного освещения используются:

1) RADBAY 1* 250 WHST E40

2) RADBAY SEALABLE 1* 250WT HIT/ HIE MT/ME E40

Обслуживание электросиловых и осветительных приборов осуществляется специальной службой предприятия.

4.3.1 Расчет нагрузки от технологического оборудования

Тип электродвигателя подбирается из каталога технологического оборудования.

Р ноп, КПД – паспортные данные электродвигателя, выбираются из электротехнических справочников /69/.

Р пр - присоединительная мощность

Р пр =Р ном /

Тип магнитного пускателя выбирается для каждого электродвигателя конкретно. Расчёт нагрузки от оборудования сведён в таблицу 4.4

4.3.2 Расчет осветительной нагрузки /69/

Аппаратный цех

Определим высоту подвеса светильников:

H р =Н 1 -h св -h р

Где: Н 1 - высота помещений, 4,8м;

h св - высота рабочей поверхности над полом, 0,8м;

h р - расчетная высота подвеса светильников, 1,2м.

H р =4,8-0,8-1,2=2,8м

Выбираем равномерную систему распределения светильников по углам прямоугольника.

Расстояние между светильниками:

L= (1,2÷1,4)·H р

L=1,3·2,8=3,64м

N св = S/L 2 (шт)

n св =1008/3,64м 2 =74 шт

Принимаем 74 светильника.

N л =n св ·N св

N л =73·2 = 146 шт

i=А*В/Н*(А+В)

где: А - длина, м;

В – ширина помещения, м.

i=24*40/4,8*(24+40) = 3,125

От потолка-70%;

От стен -50%;

От рабочей поверхности-30%.

Q=E min *S*k*Z/N л *η

к- коэффициент запаса, 1,5;

N л - число ламп, 146 шт.

Q=200*1,5*1008*1,1/146*0,5= 4340 лм

Выбираем лампу типа ЛД-80.

Творожный цех

Ориентировочное число осветительных ламп:

N св =S/L 2 (шт)

где: S- площадь освещенной поверхности, м 2 ;

L - расстояние между светильниками, м.

n св =864/3,64м 2 = 65,2 шт

Принимаем 66 светильников.

Определяем ориентировочное число ламп:

N л =n св ·N св

N св - количество ламп в светильнике

N л =66·2 = 132 шт

Определим коэффициент использования светового потока по таблице коэффициентов:

i=А*В/Н*(А+В)

где: А - длина, м;

В – ширина помещения, м.

i=24*36/4,8*(24+36) = 3

Принимаем коэффициенты отражения света:

От потолка-70%;

От стен -50%;

От рабочей поверхности-30%.

По индексу помещения и коэффициенту отражения выбираем коэффициент использования светового потока η=0,5

Определим световой поток одной лампы:

Q=E min *S*k*Z/N л *η

где: E min - минимальная освещённость, 200лк;

Z –коэффициент линейной освещённости 1,1;

к- коэффициент запаса, 1,5;

η – коэффициент использования светового потока, 0,5;

N л - число ламп, 238 шт.

Q=200*1,5*864*1,1/132*0,5 = 4356 лм

Выбираем лампу типа ЛД-80.

Цех по переработке сыворотки

n св =288/3,64 2 =21,73 шт

Принимаем 22 светильников.

Число ламп:

i=24*12/4,8*(24+12) =1,7

Световой поток одной лампы:

Q=200*1,5*288*1,1/56*0,5=3740 лк

Выбираем лампу типа ЛД-80.

Приемное отделение

Ориентировочное число светильников:

n св =144/3,64м 2 =10,8 шт

Принимаем 12 светильников

Число ламп:

Коэффициент использования светового потока:

i=12*12/4,8*(12+12)=1,3

Световой поток одной лампы:

Q=150*1,5*144*1,1/22*0,5=3740 лк

Выбираем лампу типа ЛД-80.

Установлена мощность одной осветительной нагрузки Р=N 1 *Р л (Вт)

Расчет осветительной нагрузки по методу удельных мощностей.

E min =150 лк W*100=8,2 Вт/м 2

Пересчет на освещенность 150 лк осуществляется по формуле

W= W*100* E min /100, Вт/м 2

W= 8,2*150/100 = 12,2 Вт/м 2

Определение суммарной мощности, необходимой для освещения (Р), Вт.

Аппаратный цех Р= 12,2*1008= 11712 Вт

Творожный цех Р= 12,2*864= 10540 Вт

Приемное отделение Р=12,2*144= 1757 Вт

Цех переработки сыворотки Р= 12,2* 288= 3514 Вт

Определяем число мощностей N л = Р/Р 1

Р 1 – мощность одной лампы

N л (аппаратного цеха) = 11712 / 80= 146

N л (творожного цеха) = 10540 / 80= 132

N л (приемного отделения) = 1756/ 80= 22

N л (цеха переработки сыворотки) = 3514/80 = 44

146+132+22+44= 344; 344*80= 27520 Вт.

Таблица 4.5 – Расчет силовой нагрузки

Наименование оборудования

Тип, марка

Количество

Тип электродвигателя

Мощность

КПД электродвига-

Тип магнит-

ного пуска

Номинальная Р

Электрическая

Р

Смесител

Фасовочный автомат

Дозатор Я1-ДТ-1

Фасовочный автомат

Фасовочный автомат

Линия производства твор

Таблица 4.6 – Расчёт осветительной нагрузки

Наименование помещений

Мин. освеще

Тип лампы

Кол-во ламп

Элект-ричес-

ность кВт

Удельная мощ-ность, Вт/м 2

Приемное отделение

Творожный цех

Аппаратный цех

Цех по переработке сыворотки

4.3.3 Проверочный расчет силовых трансформаторов

Активная мощность: Р тр =Р мак /η сети

где: Р мак =144,85 кВт (по графику «Расход мощности по часам суток»)

η сети =0,9

Р тр =144,85/0,9=160,94 кВт

Полная мощность, S, кВ·А

S=Р тр /соsθ

S=160,94/0,8=201,18 кВ·А

Для трансформаторной подстанции ТМ-1000/10 полная мощность составляет 1000кВ·А, полная мощность при существующей на предприятии нагрузки составляет 750кВ·А, но с учетом технического переоснащения творожного участка и организации переработки сыворотки необходимая мощность должна составлять: 750+201,18=951,18 кВ·А < 1000кВ·А.

Расход электроэнергии на 1 т вырабатываемой продукции:

Р=

где М- масса всех вырабатываемых продуктов, т;

М=28,675 т

Р=462,46/28,675=16,13 кВт*ч/т

Таким образом, из графика расхода электроэнергии по часам суток видно, что наибольшая мощность требуется в промежутке времени с 8 00 до 11 00 и с 16до 21часов. В этот период времени происходит приемка и обработка поступающего молока-сырья, производство изделий, розлив напитков. Небольшие скачки наблюдаются в период с 8до 11 , когда идет большинство процессов обработки молока для получения продуктов.

4.3.4 Расчет сечений и выбор кабелей.

Сечение кабеля находят по потере напряжения

S=2 PL*100/γ*ζ*U 2 , где:

L – длина кабеля, м.

γ – удельная проводимость меди, ОМ * м.

ζ – допустимые потери напряжения,%

U- напряжение сети, В.

S= 2*107300*100*100 / 57,1*10 3 *5*380 2 =0,52 мм 2 .

Вывод: сечение используемого предприятием кабеля марки ВВР 1,5 мм 2 – следовательно, имеющийся кабель обеспечит участки электроэнергией.

Таблица 4.7 – Почасовой расход электроэнергии на выработку продуктов

Часы суток

Насос 50-1Ц7,1-31

Счетчик Взлет-ЭР

Охладитель

Насос Г2-ОПА

ППОУ ЦКРП-5-МСТ

Сепаратор-нормализатор ОСЦП-5

Счетчик-расходомер

Творогоизготовитель ТИ

Продолжение таблицы 4.7

Часы суток

Мембранный насос

Обезвоживатель

Стабилизатор

параметров

Насос П8-ОНБ-1

Автомат фасовочный SAN/T

Измельчитель-смеситель-250

Автомат фасовочный

Фарш мешалка

Продолжение таблицы 4.7

Часы суток

Сепаратор-

Осветлитель

Ванна ВДП

Насос-дозатор НРДМ

Установка

Ванна ВДП

Насос погружной Seepex

Трубчатый

пастеризатор

Продолжение таблицы 4.7

Часы суток

Автомат фасовочный

Приемное отделение

Аппаратный цех

Творожный цех

Цех переработки сыворотки

Окончание таблицы 4.7

Часы суток

Неучтенные потери 10%

График расхода электроэнергии.

При строительстве загородного дома важно провести все коммуникации, к которым относятся системы отопления, канализации и водоснабжения. При строительстве отдельной системы особое внимание уделяется выбору труб. Достаточно часто для трубопроводов выбираются стальные трубы, которые отличаются высокой устойчивостью к механическим воздействиям и возможностью выдерживать высокие температуры. Основными параметрами выбора являются толщина стальной трубы и ее диаметр.

Основные характеристики труб из стали

Трубы по способу изготовления подразделяются на следующие виды:

  • бесшовные;
  • электросварные.

Бесшовные трубы могут быть:

  • горячедеформированными. Изготовление таких труб производится из горячих заготовок методом прессования;
  • холоднодеформированными. Трубы такого вида после прохождения через пресс охлаждаются, и именно в таком виде производится их окончательное формирование.

Горячедеформированные трубы отличаются большей толщиной стенки, что придает изделиям дополнительную прочность.

Электросварные трубы также подразделяются на два основных вида:

  • спиралешовные;
  • прямошовные.

Трубы с прямым швом по своим техническим показателям практически не отличаются от бесшовных.

Перед изготовлением спиралешовных труб листы металла закручиваются. Такой способ производства позволяет достичь повышенной прочности труб на разрыв. Спиралешовные трубы используются преимущество для прокладки газопроводов и нефтепроводов в зонах с повышенной сейсмической активностью.

Основными характеристиками труб являются следующие параметры:

  • диаметр, который бывает внутренним, наружным, условным;
  • толщина стенки.

Все трубы изготавливаются в соответствии с требованиями ГОСТ и могут иметь следующие типовые размеры:

  • электросварные трубы (основной ГОСТ 10707-80) могут иметь диаметр до 110 мм и толщину стенки до 5 мм. Основные размеры труб и соответствующая толщина представлены в таблице;
Диаметр, мм Стенки толщина, мм
5 – 7 0,5 – 1,0
8, 9 0,5 – 1,2
10 0,5 – 1,5
11, 12 0,5 – 2,5
13 – 16 0,7 – 2,5
17 – 21 1,0 – 2,5
22 — 32 0,9 – 5,0
34 — 50 1,0 – 5,0
51 – 67 1,4 – 5
77 – 89 2,5 – 5
89 – 110 4 – 5
  • бесшовные трубы различных видов (основной ГОСТ 9567-75). Изготавливаемые типовые размеры представлены в таблице;
Горячедеформированные трубы Холоднодеформированные трубы
Диаметр, мм Стенки, мм Диаметр, мм Стенки, мм
25 – 50 2,5 – 8,0 4 0,2 – 1,2
54 — 76 3 – 8,0 5 0,2 – 1,5
83 – 102 3,5 – 8,0 6 – 9 0,2 – 2,5
108 – 133 4,0 – 8 10 — 12 0,2 – 3,5
140 – 159 4,5 – 8,0 12 – 40 0,2 – 5
168 – 194 5 – 8 42 – 60 0,3 – 9
203 – 219 6 – 8 63 – 70 0,5 – 12
245 – 273 6,5 – 8 73 – 100 0,8 – 12
299 – 325 7,5 – 8 102 – 240 1 – 4,5
250 – 500 1,5 – 4,5
530 – 600 2 – 4,5

Диаметры стальных труб чаще всего обозначаются миллиметрами, но на практике можно встретить трубы, характеристики которых представлены в дюймах.

Перевести дюймовый диаметр в миллиметровый (или обратно) можно при помощи .

Более подробно разобраться с соответствием дюймов и миллиметров для различных видов труб поможет видео.

Выбор труб для коммуникаций

Стальные трубы преимущественно используются для проведения систем отопления и водоснабжения. Чтобы самостоятельно определить наиболее подходящий диаметр того или иного трубопровода, необходимо знать технические характеристики трубопровода и формулу для расчета.

Подбор параметров труб для водоснабжения

Диаметр труб для водопровода или канализации определяется с учетом следующих параметров:

  1. длины трубопровода;
  2. пропускной способности;
  3. наличия поворотов в системе.

Определяющим фактором является пропускная способность, которую можно рассчитать по следующей математической формуле:

Определив пропускную способность, диаметр можно рассчитать по формуле или подобрать по таблице ниже.

Чтобы избежать сложности математических расчетов, можно воспользоваться рекомендациями специалистов:

  1. монтаж стояка системы должен обустраиваться трубами с диаметром не менее 25 мм;
  2. разводку водопроводных труб можно проводить трубами диаметром 15 мм.

Дополнительно при определении диаметра трубопровода можно ориентироваться на зависимость между длиной трубопровода и диаметром труб, которая выражается следующими характеристиками:

  • если общая длина менее 10 м, то подходят трубы диаметром 20 мм;
  • если длина трубопровода находится в пределах 10 – 30 м, то целесообразнее применять трубы с диаметром 25 мм;
  • при общей длине более 30 м рекомендуется использовать трубы, имеющие диаметр 32 мм.

Подбор параметров труб для отопления

При подборе труб для отопления необходимо предварительно определить следующие параметры:

  • разницу температур при входе в систему и выходе (обозначается Δtº);
  • скорость движения теплоносителя по системе (V);
  • количество тепла, требуемого для обогрева помещения определенной площади (Q).

Зная эти параметры, произвести расчет можно по математической формуле:

Чтобы не проводить сложные расчеты самостоятельно можно воспользоваться готовой таблицей для подбора диаметра трубы системы отопления (с инструкцией по ее использованию можно ознакомиться ).

При выборе диаметра важно учитывать, что подобранный при помощи расчетов или таблиц показатель не может быть менее диаметра выходного отверстия отопительного оборудования.

После определения оптимального диаметра трубопровода толщина стенки трубы определяется в соответствии с вышеуказанными таблицами. Для системы отопления достаточно толщины стальной трубы 0, 5 мм, а для системы водоснабжения 0,5 – 1, 5 мм в зависимости от условий прохождения трубопровода.

Потери энергии при движении жидкости по трубам определяются ре­жимом движения и характером внутренней поверхности труб. Свойства жидкости или газа учитываются в расчете с помощью их параметров: плотности р и кинематической вязкости v. Сами же формулы, использу­емые для определения гидравлических потерь, как для жидкости, так и для пара являются одинаковыми.

Отличительная особенность гидравлического расчета паропровода заключается в необходимости учета при определении гидравлических потерь изменения плотности пара. При расчете газопроводов плотность газа определяют в зависимости от давления по уравнению состояния, написанному для идеальных газов, и лишь при высоких давлениях (больше примерно 1,5 МПа) вводят в уравнение поправочный коэффи­циент, учитывающий отклонение поведения реальных газов от поведе­ния идеальных газов.

При использовании законов идеальных газов для расчета трубопро­водов, по которым движется насыщенный пар, получаются значительные ошибки. Законы идеальных газов можно использовать лишь для сильно перегретого пара. При расчете паропроводов плотность пара определя­ют в зависимости от давления по таблицам. Так как давление пара в свою очередь зависит от гидравлических потерь, расчет паропроводов ведут методом последовательных приближений. Сначала задаются по­терями давления на участке, по среднему давлению определяют плот­ность пара и далее рассчитывают действительные потери давления. Ес­ли ошибка оказывается недопустимой, производят пересчет.

При расчете паровых сетей заданными являются расходы пара, его начальное давление и необходимое давление перед установками, ис­пользующими пар. Методику расчета паропроводов рассмотрим на при­мере.

ТАБЛИЦА 7.6. РАСЧЕТ ЭКВИВАЛЕНТНЫХ ДЛИН (Аэ=0,0005 м)

№ участка на рис. 7.4

Местные сопротивления

Коэффициент мест­ного сопротивления С

Эквивалентная дли­на 1э, м

Задвижка

Задвижка

Сальниковые компенсаторы (4 шт.)

Тройник при разделении по­токов (проход)

Задвижка

Сальниковые компенсаторы (3 шт.)

Тройник при разделении по­токов (проход)

Задвижка

Сальниковые компенсаторы (3 шт.)

Сальниковые компенсаторы (2 шт.)

0,5 0,3-2=0,бі

Тройник при разделении по­токов (ответвление) Задвижка

Сальниковые компенсаторы (2 шт)

Тройник при разделении по­токов (ответвление) Задвижка

Сальниковые компенсаторы (1 шт)

6,61 кг/м3.

(3 шт.)................................... *........................................................ 2,8-3 = 8,4

Тройник при разделении потока (проход) . . ._________________ 1__________

Значение эквивалентной длины при 2£ = 1 при k3 = 0,0002 м для трубы диамет­ром 325X8 мм по табл. 7.2 /э=17,6 м, следовательно, суммарная эквивалентная дли­на для участка 1-2: /э = 9,9-17,6= 174 м.

Приведенная длина участка 1-2: /пр і-2=500+174=674 м.

Источником тепла называется комплекс оборудования и устройств, с помощью которых осуществляется преобразование природных и искусственных видов энергии в тепловую энергию с требуемыми для потребителей параметрами. Потенциальные запасы основных природных видов …

В результате гидравлического расчета тепловой сети определяют диаметры всех участков теплопроводов, оборудования и запорно-регули - рующей арматуры, а также потери давления теплоносителя на всех эле­ментах сети. По полученным значениям потерь …

В системах теплоснабжения внутренняя коррозия трубопроводов и оборудования приводит к сокращению срока их службы, авариям и зашламлению воды продуктами коррозии, поэтому необходимо пре­дусматривать меры борьбы с ней. Сложнее обстоит дело …