Сухая очистка от пыли. Оздоровление воздушной среды. Очистка воздуха от пыли Очистка воздуха от пыли и газа

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Методы очистки воздуха от пыли

Для обезвреживания аэрозолей (пылей и туманов) используют сухие, мокрые и электрические методы. Кроме того, аппараты отличаются друг от друга как по конструкции, так и по принципу осаждения взвешенных частиц. В основе работы сухих аппаратов лежат гравитационные, инерционные и центробежные механизмы осаждения или фильтрационные механизмы. В мокрых пылеуловителях осуществляется контакт запыленных газов с жидкостью. При этом осаждение происходит на капли, на поверхность газовых пузырей или на пленку жидкости. В электрофильтрах отделение заряженных частиц аэрозоля происходит на осадительных электродах.

К сухим механическим пылеуловителям относятся аппараты, в которых использованы различные механизмы осаждения: гравитационный, инерционный и центробежный.

Инерционные пылеуловители. При резком изменении направления движения газового потока частицы пыли под воздействием инерционной силы будут стремиться двигаться в прежнем направлении и после поворота потока газов выпадают в бункер. Эффективность этих аппаратов небольшая.

Жалюзийные аппараты. Эти аппараты имеют жалюзийную решетку, состоящую из рядов пластин или колец. Очищаемый газ, проходя через решетку, делает резкие повороты. Пылевые частицы вследствие инерции стремятся сохранить первоначальное направление, что приводит к отделению крупных частиц из газового потока, тому же способствуют их удары о наклонные плоскости решетки, от которых они отражаются и отскакивают в сторону от щелей между лопастями жалюзи В результате газы делятся на два потока. Пыль в основном содержится в потоке, который отсасывают и направляют в циклон, где его очищают от пыли и вновь сливают с основной частью потока, прошедшего через решетку. Скорость газа перед жалюзийной решеткой должна быть достаточно высокой, чтобы достигнуть эффекта инерционного отделения пыли.

Обычно жалюзийные пылеуловители применяют для улавливания пыли с размером частиц >20 мкм.

Эффективность улавливания частиц зависит от эффективности решетки и эффективности циклона, а также от доли отсасываемого в нем газа.

Циклоны. Циклонные аппараты наиболее распространены в промышленности.

По способу подвода газов в аппарат их подразделяют на циклоны со спиральными, тангенциальным и винтообразным, а также осевым подводом. Циклоны с осевым подводом газов работают как с возвратом газов в верхнюю часть аппарата, так и без него.

Газ вращается внутри циклона, двигаясь сверху вниз, а затем движется вверх. Частицы пыли отбрасываются центробежной силой к стенке. Обычно в циклонах центробежное ускорение в несколько сот, а то и тысячу раз больше ускорения силы тяжести, поэтому даже весьма маленькие частицы пыли не в состоянии следовать за газом, а под влиянием центробежной силы движутся к стенке.

В промышленности циклоны подразделяются на высокоэффективные и высокопроизводительные.

При больших расходах очищаемых газов применяют групповую компоновку аппаратов. Это позволяет не увеличивать диаметр циклона, что положительно сказывается на эффективности очистки. Запыленный газ входит через общий коллектор, а затем распределяется между циклонами.

Батарейные циклоны - объединение большого числа малых циклонов в группу. Снижение диаметра циклонного элемента преследует цель увеличения эффективности очистки.

Вихревые пылеуловители. Отличием вихревых пылеуловителей от циклонов является наличие вспомогательного закручивающего газового потока.

В аппарате соплового типа запыленный газовый поток закручивается лопаточным завихрителем и движется вверх, подвергаясь при этом воздействию трех струй вторичного газа, вытекающих из тангенциально расположенных сопел. Под действием центробежных сил частицы отбрасываются к периферии, а оттуда в возбуждаемый струями спиральный поток вторичного газа, направляющий их вниз, в кольцевое межтрубное пространство. Вторичный газ в ходе спирального обтекания потока очищаемого газа постепенно полностью проникает в него. Кольцевое пространство вокруг входного патрубка оснащено подпорной шайбой, обеспечивающей безвозвратный спуск пыли в бункер. Вихревой пылеуловитель лопаточного типа отличается тем, что вторичный газ отбирается с периферии очищенного газа и подается кольцевым направляющим аппаратом с наклонными лопатками.

В качестве вторичного газа в вихревых пылеуловителях может быть использован свежий атмосферный воздух, часть очищенного газа или запыленные газы. Наиболее выгодным в экономическом отношении является использование в качестве вторичного газа запыленных газов.

Как и у циклонов, эффективность вихревых аппаратов с увеличением диаметра падает. Могут быть батарейные установки, состоящие из отдельных мультиэлементов диаметром 40 мм.

Динамические пылеуловители. Очистка газов от пыли осуществляется за счет центробежных сил и сил Кориолиса, возникающих при вращении рабочего колеса тягодутьевого устройства.

Наибольшее распространение получил дымосос-пылеуловитель. Он предназначен для улавливания частиц пыли размером >15 мкм. За счет разности давлений, создаваемых рабочим колесом, запыленный поток поступает в «улитку» и приобретает криволинейное движение. Частицы пыли отбрасываются к периферии под действием центробежных сил и вместе с 8-10% газа отводятся в циклон, соединенный с улиткой. Очищенный газовый поток из циклона возвращается в центральную часть улитки. Очищенные газы через направляющий аппарат поступают в рабочее колесо дымососа-пылеуловителя, а затем через кожух выбросов в дымовую трубу.

Фильтры. В основе работы всех фильтров лежит процесс фильтрации газа через перегородку, в ходе которого твердые частицы задерживаются, а газ полностью проходит сквозь нее.

В зависимости от назначения и величины входной и выходной концентрации фильтры условно разделяют на три класса: фильтры тонкой очистки, воздушные фильтры и промышленные фильтры.

Рукавные фильтры представляют собой металлический шкаф, разделенный вертикальными перегородками на секции, в каждой из которых размещена группа фильтрующих рукавов. Верхние концы рукавов заглушены и подвешены к раме, соединенной с встряхивающим механизмом. Внизу имеется бункер для пыли со шнеком для ее выгрузки. Встряхивание рукавов в каждой из секций производится поочередно. (рис 6)

Волокнистые фильтры. Фильтрующий элемент этих фильтров состоит из одного или нескольких слоев, в которых однородно распределены волокна. Это фильтры объемного действия, так как они рассчитаны на улавливание и накапливание частиц преимущественно по всей глубине слоя. Сплошной слой пыли образуется только на поверхности наиболее плотных материалов. Такие фильтры используют при концентрации дисперсной твердой фазы 0,5-5 мг/м 3 и только некоторые грубоволокнистые фильтры применяют при концентрации 5-50 мг/м 3 . При таких концентрациях основная доля частиц имеет размеры менее 5-10 мкм.

Различают следующие виды промышленных волокнистых фильтров:

Сухие - тонковолокнистые, электростатические, глубокие, фильтры предварительной очистки (предфильтры);

Мокрые - сеточные, самоочищающиеся, с периодическим или непрерывным орошением.

Процесс фильтрации в волокнистых фильтрах состоит из двух стадий. На первой стадии уловленные частицы практически не изменяют структуры фильтра во времени, на второй стадии процесса в фильтре происходят непрерывные структурные изменения вследствие накопления уловленных частиц в значительных количествах.

Зернистые фильтры. Применяются для очистки газов реже, чем волокнистые фильтры. Различают насадочные и жесткие зернистые фильтры.

Полые газопромыватели. Наиболее распространены полые форсуночные скрубберы. Они представляют колонну круглого или прямоугольного сечения, в которой осуществляется контакт между газом и каплями жидкости. По направлению движения газа и жидкости полые скрубберы делят на противоточные, прямоточные и с поперечным подводом жидкости.

Насадочные газопромыватели представляют собой колонны с насадкой навалом или регулярной. Их используют для улавливания хорошо смачиваемой пыли, но при невысокой концентрации.

Газопромыватели с подвижной насадкой имеют большое распространение в пылеулавливании. В качестве насадки используют шары из полимерных материалов, стекла или пористой резины. Насадкой могут быть кольца, седла и т.д. Плотность шаров насадки не должна превышать плотности жидкости.

Скрубберы с подвижной шаровой насадкой конической формы (КСШ). Для обеспечения стабильности работы в широком диапазоне скоростей газа, улучшения распределения жидкое и уменьшения уноса брызг предложены аппараты с подвижной шаровой насадкой конической формы. Разработано два типа аппаратов: форсуночный и эжекционный

В эжекционном скруббере орошение шаров осуществляет жидкостью, которая всасывается из сосуда с постоянным уровнем газами, подлежащими очистке.

Тарельчатые газопромыватели (барботажные, пенные). Наиболее распространены пенные аппараты с провальными тарелками или тарелками с переливом. Тарелки с переливом имеют отверстия диаметром 3-8 мм. Пыль улавливается пенным слоем, который образуется при взаимодействии газа и жидкости.

Эффективность процесса пылеулавливания зависит от величины межфазной поверхности.

Пенный аппарат со стабилизатором пенного слоя. На провальной решетке устанавливается стабилизатор, представляющий собой сотовую решетку из вертикально расположенных пластин, разделяющих сечение аппарата и пенный слой на небольшие ячейки. Благодаря стабилизатору происходит значительное накопление жидкости на тарелке, увеличение высоты пены по сравнению с провальной тарелкой без стабилизатора. Применение стабилизатора позволяет существенно сократить расход воды на орошение аппарата.

Газопромыватели ударно-инерционного действия. В этих аппаратах контакт газов с жидкостью осуществляется за счет удара газового потока о поверхность жидкости с последующим пропусканием газожидкостной взвеси через отверстия различной конфигурации или непосредственным отводом газожидкостной взвеси в сепаратор жидкой фазы. В результате такого взаимодействия образуются капли диаметром 300-400 мкм.

Г азопромыватели центробежного действия. Наиболее распространены центробежные скрубберы, которые по конструктивному признаку можно разделить на два вида: 1) аппараты, в которых закрутка газового потока осуществляется при помощи центрального лопастного закручивающего устройства; 2) аппараты с боковым тангенциальным или улиточным подводом газа.

Скоростные газопромыватели (скрубберы Вентури). Основной частью аппаратов является труба-распылитель, в которой обеспечивается интенсивное дробление орошаемой жидкости газовым потоком, движущимся со скоростью 40-150 м/с. Имеется также каплеуловитель.

Электрофильтры. Очистка газа от пыли в электрофильтрах происходит под действием электрических сил. В процессе ионизации молекул газов электрическим разрядом происходит заряд содержащихся в них частиц. Ионы абсорбируются на поверхности пылинок, а затем под воздействием электрического поля они перемещаются и осаждаются к осадительным электродам.

Для обезвреживания отходящих газов от газообразных и парообразных токсичных веществ применяют следующие методы: абсорбции (физической и хемосорбции), адсорбции, каталитические, термические, конденсации и компримирования.

Абсорбционные методы очистки отходящих газов подразделяют по следующим признакам: 1) по абсорбируемому компоненту; 2) по типу применяемого абсорбента; 3) по характеру процесса - с циркуляцией и без циркуляции газа; 4) по использованию абсорбента - с регенерацией и возвращением его в цикл (циклические) и без регенерации (не циклические); 5) по использованию улавливаемых компонентов - с рекуперацией и без рекуперации; 6) по типу рекуперируемого продукта; 7) по организации процесса - периодические и непрерывные; 8) па конструктивным типам абсорбционной аппаратуры.

Для физической абсорбции на практике применяют воду, органические растворители, не вступающие в реакцию с извлекаемым газом, и водные растворы этих веществ. При хемосорбции в качестве абсорбента используют водные растворы солей и щелочей, органические вещества и водные суспензии различных веществ.

Выбор метода очистки зависит от многих факторов: концентрации извлекаемого компонента в отходящих газах, объема и температуры газа, содержания примесей, наличия хемосорбентов, возможности использования продуктов рекуперации, требуемой степени очистки. Выбор производят на основании результатов технико-экономических расчетов.

Адсорбционные методы очистки газов используют для удаления из них газообразных и парообразных примесей. Методы основаны на поглощении примесей пористыми телами-адсорбентами. Процессы очистки проводят в периодических или непрерывных адсорберах. Достоинством методов является высокая степень очистки, а недостатком - невозможность очистки запыленных газов.

Каталитические методы очистки основаны на химических превращениях токсичных компонентов в нетоксичные на поверхности твердых катализаторов. Очистке подвергаются газы, не содержащие пыли и катализаторных ядов. Методы используются для очистки газов от оксидов азота, серы, углерода и от органических примесей. Их проводят в реакторах различной конструкции. Термические методы применяют для обезвреживания газов от легко окисляемых токсических примесей.

Методы очистки воздуха от пыли при выбрасывании в атмосферу

Для очистки воздуха от пыли при меняют пылеуловители и фильтры:

Фильтры - устройства, в которых отделение пылевых частиц от воздуха производится путем филь трации через пористые материалы.

Типы пылеулавливающих аппаратов:

Основными показателями являются:

производительность (или пропускная способность аппарата), оп ределяемая объемом воздуха, который может быть очищен от пыли за единицу времени (м 3 /час);

аэродинамическое сопро тивление аппарата прохождению че рез него очищаемого воздуха (Па). Оно определяется разностью давле ний на входе и выходе.

общий коэффициент очи стки или общая эффективность пыле улавливания, определяемая отношени ем массы пыли, уловленной аппаратом С у, к массе пыли, поступившей в него с загрязненным воздухом С вх: С у /С вх х 100 (%);

фракционный коэффици ент очистки, т. е. эффективность пылеулавливания аппарата по отно шению к различным по крупности фракциям (в долях единицы или в %)

Пылеосадительные камеры, эффективность пылеулавливния - 50 … 60 %. Принцип очистки - истечение запыленного воздуха из камеры со скоростью меньшей скорости витания пыли, т.е. пыли успевает осесть (см. рис. 1).

Циклоны - эффективность пылеулавливния - 80...90%. Принцип очистки - отброс тяжелых частиц пыли на стенки циклона при закручивании потока запыленного воздуха (см. рис. 2). Гидравлическое сопротивление циклонов колеблется в пределах 500... 1100 Па. Применяются для тяжелых пылей: цементной, песчаной, древесной…

Рукавные фильтры (для улавлива ния сухих неслипающихся пылей) эффективность пылеулавливния - 90...99 %. Принцип очистки - задерживание частиц пыли на фильтрующих элементах (см. рис. 3). Основные рабочие эле менты - ма терчатые рукава, подвешиваемые к встря хивающему устройству. Применяются для тяжелых пылей: древесной, мучной, …

Гидравлическое сопротивление фильт ра в зависимости от степени запыления рукавов колеблется в пределах 1...2.5 кПа.

Фильтр-циклоны - комбинация циклона (отделение тяжелых частиц) и рукавного фильтра (отделение легких частиц). См. рис. 3.

Электрические фильтры - отделение пылевых частиц от воздуха производит ся под воздействием эле ктростатического поля высокой напряжен ности. В металлическом корпусе, стенки которых заземлены и являются осадительными электродами, размещены коронирующие электроды, соединенные с источником постоянного тока. Напря жение - 30...100 кВ.

Вокруг отрицательно заряженных электродов образуется электрическое поле. Проходящий через электрофильтр запыленный газ ионизируется и пылевые частицы приобретают отрицательные заряды. Последние начинают перемещаться к стенкам фильтра. Очистка осадительных электродов производится путем их остукивания или вибрации, а иногда путем смыва водой. аэрозоль фильтр скруббер

Эффективность пылеулавливания - 99,9 %. Низкое гидравлическое сопротивление 100...150 Па,

Размещено на Allbest.ru

...

Подобные документы

    Плавка цинка и сплавов. Промышленные выбросы пыли при плавке, предельно допустимые концентрации. Классификация систем очистки воздуха и их параметры. Сухие и мокрые пылеуловители. Электрофильтры, фильтры, туманоуловители. Метод абсорбции, хемосорбции.

    дипломная работа , добавлен 16.11.2013

    Характеристика методов очистки воздуха. "Сухие" механические пылеуловители. Аппараты "мокрого" пылеулавливания. Созревание и послеуборочное дозревание зерна. Сушка зерна в зерносушилке. Процесс помола зерна. Техническая характеристика Циклона ЦН-15У.

    курсовая работа , добавлен 28.09.2009

    Основные физико-химические свойства пыли. Оценка пылеулавливания батарейного циклона БЦ 250Р 64 64 после модернизации. Анализ метода обеспыливания газов для обеспечения эффективного улавливания с использованием физико-химических свойств коксовой пыли.

    дипломная работа , добавлен 09.11.2014

    Микробиологические методы обезвреживания промышленных органических жидких отходов. Подбор аппарата для очистки сточных вод от фенола и нефтепродуктов: выбор носителя культуры микроорганизмов и метода иммобилизации; технологический и механический расчеты.

    дипломная работа , добавлен 19.12.2010

    Основные методы очистки масличных семян от примесей. Технологические схемы, устройство и работа основного оборудования. Бурат для очистки хлопковых семян. Сепаратор с открытым воздушным циклом. Методы очистки воздуха от пыли и пылеуловительные устройства.

    контрольная работа , добавлен 07.02.2010

    Образование пыли при производстве цемента, экономическая необходимость ее регенерации. Получение цемента из обжиговой пыли и остатков товарного бетона. Экологический мониторинг атмосферного воздуха в зонах загрязнения отходами цементного производства.

    курсовая работа , добавлен 11.10.2010

    Организация машинного производства. Методы очистки технологических и вентиляционных выбросов от взвешенных частиц пыли или тумана. Расчет аппаратов очистки газов. Аэродинамический расчет газового тракта. Подбор дымососа и рассеивание холодного выброса.

    курсовая работа , добавлен 07.09.2012

    Анализ схем очистки пылей, образующихся на свинцовом производстве. Токсичность свинцовой пыли. Характеристика эксплуатационных показателей пылеулавливающего оборудования. Расчет размеров аппаратов, используемых для очистки выбросов от свинцовой пыли.

    курсовая работа , добавлен 19.04.2011

    Методы и технологические схемы очистки пылевоздушных выбросов от каменно-угольной пыли с применением пылеосадительных камер, инерционных и центробежных пылеуловителей, фильтровальных перегородок. Расчет материального баланса калорифера, циклона, фильтра.

    курсовая работа , добавлен 01.06.2014

    Знакомство с наиболее распространенными и эффективными методами очистки воздуха. Характеристика аппарата Циклон-ЦН15У: анализ сфер использования, рассмотрение функций. Особенности разработки и промышленного изготовления дешевых фильтровальных тканей.

Как и любой другой объект в доме, системный блок компьютера может засоряться пылью. Она появляется не только на его поверхности, но и на комплектующих, размещенных внутри. Естественно, необходимо регулярно выполнять чистку, иначе работа устройства будет ухудшаться с каждым днем. Если вы никогда не чистили свой компьютер или ноутбук или делали это более, чем полгода назад, рекомендуем заглянуть под крышку своего устройства. Есть большая вероятность того, что там вы обнаружите огромное количество пыли, которая ухудшает работу ПК.

Главным следствием загрязненного пылью компьютера является нарушение системы охлаждения, что может привести к постоянным перегревам как отдельных компонентов устройства, так и всей системы в целом. В худшем случае может сгореть процессор или видеокарта. К счастью, благодаря современным технологиям это случается довольно редко, поскольку разработчики все чаще реализуют в своих продуктах функцию экстренного отключения при большой температуре. Тем не менее это не повод игнорировать загрязнение компьютера.

Довольно важным фактором является то, каким устройством конкретно вы владеете. Дело в том, что очистка ноутбука кардинально отличается от аналогичного процесса с компьютером. В данной статье вы найдете инструкцию для каждого из типов устройств.

Процесс очистки настольного ПК от пыли состоит из нескольких этапов, которые будут рассмотрены в данном разделе. В целом этот метод не является слишком сложным, но и простым его назвать нельзя. Если полностью соблюдать инструкцию, то не должно возникнуть никаких трудностей. Первым делом необходимо подготовить все инструменты, которые могут при выполнении процедуры, а именно:

  • Набор подходящих под ваш системный блок отверток для разборки устройства;
  • Маленькие и мягкие кисточки для труднодоступных мест;
  • Резиновый ластик;
  • Резиновые перчатки (при желании);
  • Пылесос.

Как только все инструменты будут готовы, можно приступать.

Будьте осторожны, если не имеете опыта в разборке и сборке персонального компьютера, ведь любая ошибка может стать фатальной для вашего устройства. Если неуверены в своих силах, лучше обратиться в сервисный центр, где за небольшую плату все сделают за вас.

Разборка компьютера и первостепенная чистка

Для начала необходимо снять боковую крышку системного блока. Это делается с помощью специальных шурупов, размещенных на задней части устройства. Естественно, перед началом работы нужно полностью отключить компьютер от электричества.

Если последний раз компьютер чистился довольно давно, в этот момент перед вами раскроются огромные толщи пыли. Первым делом нужно избавиться от них. Лучше всего с этой задачей справится обычный пылесос, в который можно засосать большую часть пыли. Тщательно пройдитесь им по всей поверхности комплектующих. Будьте осторожны и не прикасайтесь к материнской плате и другим элементам системного блока твердыми предметами, так как это может привести к поломке аппаратных компонентов.

Как с этим будет закончено, можно переходить к следующим шагам. Для правильной и качественной очистки необходимо отсоединить все комплектующие друг от друга, после чего работать с каждым из них отдельно. Опять же, будьте предельно осторожны. Если вы неуверены в том, что сможете собрать все обратно, лучше обратитесь в сервисный центр.

Разборка происходит с помощью откручивания всех шурупов, держащих комплектующие. Также, как правило, существуют специальные защелки, с помощью которых установлена оперативная память или кулер для процессора. Все зависит исключительно от индивидуальной комплектации устройства.

Кулеры и процессор

Как правило, наибольшее количество пыли накапливается в вентиляторе и радиаторе, входящих в систему охлаждения процессора. Поэтому почистить этот компонент компьютера важнее всего. Вам понадобится кисточка, приготовленная ранее, а также пылесос. Для того чтобы снять кулер, необходимо ослабить защелки, на которых он держится.

Тщательно продуйте радиатор со всех сторон, чтобы вылетела не осевшая пыль. Далее в ход вступает кисточка, с помощью которой можно пробраться в каждый элемент решетки и идеально ее вычистить. Кстати, помимо пылесоса, можно использовать резиновую грушу или баллончик со сжатым воздухом.

Сам процессор снимать с материнской платы не нужно. Достаточно лишь протереть его поверхность, а также участок вокруг него. К слову, помимо очистки компьютера от пыли, данный процесс лучше всего совместить с заменой термопасты. О том, как это сделать, мы рассказывали в отдельной статье

Также стоит обратить внимание на необходимость смазать все вентиляторы. Если до этого вы замечали лишний шум при работе компьютера, вполне возможно, что пришло время смазки.

Блок питания

Чтобы извлечь блок питания из системного блока компьютера, нужно открутить шурупы, расположенные на его задней части. К этому моменту от материнской платы должны быть отключены все кабели, идущие от блока питания. Далее он просто достается.

С блоком питания все не так просто. Связано это с тем, что его не только нужно отключить от материнской платы и извлечь из системника, но и разобрать. Это можно сделать с помощью специальных шурупов, размещенных на его поверхности. Если таковых нет, попробуйте оторвать все наклейки и посмотреть под ними. Часто шурупы размещают именно там.

Итак, блок разобран. В целом, дальше все происходит по аналогии с радиатором. Сначала продуваете все пылесосом или грушей, чтобы избавиться от неустойчивой пыли, появившейся не так давно, после чего работаете кисточкой, пробираясь в труднодоступные места устройства. Плюс ко всему можно воспользоваться баллончиком со сжатым воздухом, который тоже отлично справляется с задачей.

Процесс очистки оперативной памяти несколько отличается от такового для других компонентов. Связано это с тем, что она представляет собой небольшие планки, на которых скапливается не так уж и много пыли. Однако чистку необходимо провести.

Как раз для оперативной памяти и нужно было приготовить резиновый ластик или обычный карандаш, на обратном конце которого есть «стерка». Итак, необходимо извлечь планки из гнезд, в которых они размещены. Для этого необходимо ослабить специальные защелки.

Когда планки будут извлечены, следует тщательно, но не переусердствовав, тереть ластиком по контактам желтого цвета. Таким образом вы избавитесь от любых загрязнений, мешающих работе оперативной памяти.

Видеокарта

К сожалению, разобрать видеокарту в домашних условиях сможет не каждый умелец. Поэтому почти в 100 процентах случаев с этим компонентом лучше обратиться в сервисный центр. Однако можно и с помощью подручных средств провести минимальную очистку, которая тоже способна помочь.

Все, что можно сделать в нашем случае, это качественно продуть графический адаптер во все отверстия, а также попытаться пробраться кисточкой туда, куда получится. Здесь все зависит от модели, например, старые карты не нужно разбирать, поскольку у них отсутствует корпус.


Если, конечно, вы уверены в своих силах, можете попытаться снять корпус с графического адаптера и провести его очистку, а также заменить термопасту. Но будьте осторожны, так как данное устройство является очень хрупким.

Для очистки воздуха от пыли применяют пылеуловители и фильтры. К фильтрам относятся устройства, в которых отделение пылевых частиц от воздуха производится путем фильтрации через пористые материалы. Аппараты, основанные на иных принципах пылеотделения, принято называть пылеуловителями.

В зависимости от природы сил, действующих на взвешенные в газе пылевые частицы для их отделения от газового потока, используют следующие типы пылеулавливающих аппаратов:

сухие механические пылеуловители (взвешенные частицы отделяются от газа при помощи внешней механической силы);

мокрые пылеуловители (взвешенные частицы отделяются от газа путем промывки его жидкостью, захватывающей эти частицы);

электрические пылеуловители (частицы пыли отделяются от газового потока под действием электрических сил);

фильтры (пористые перегородки или слои материала, задерживающие пылевые частицы при пропускании через них запыленного воздуха);

комбинированные пылеуловители (используются одновременно различные принципы очистки).

По функциональному назначению пылеулавливающее оборудование подразделяют на два вида: 1) для очистки приточного воздуха в системах вентиляции и кондиционирования; 2) для очистки воздуха и газов, выбрасываемых в атмосферу системами промышленной вентиляции.

Основными технико-экономическими показателями, характеризующими промышленную эксплуатацию пылеуловителей и фильтров, являются:

производительность (или пропускная способность аппарата), определяемая объемом воздуха, который может быть очищен от пыли за единицу времени (м 3 /ч, м 3 /с);

аэродинамическое сопротивление аппарата прохождению через него очищаемого воздуха (Па). Оно определяется разностью полных давлений на входе в аппарат и выходе из него, т. е. р = р вх - р вых ;

общий коэффициент очистки или общая эффективность пылеулавливания, определяемая отношением массы пыли, уловленной аппаратом G ул , к массе пыли, поступившей в него с загрязненным воздухом GBX и выражаемый в относительных единицах или в %:

η = (G ул /G вх )100;

фракционный коэффициент очистки, т. е. эффективность пылеулавливания аппарата по отношению к различным по крупности фракциям (в долях единицы или в %)

η = [Ф вх – Ф вых (1 – η)] /Ф вх

где Ф вх, Ф вых - содержание фракции пыли в воздухе соответственно на входе и выходе из пылеуловителя, %.

Стоимость очистки воздуха (руб. на 1000 м 3 очищаемого воздуха).

Наиболее простыми по устройству и эксплуатации аппаратами являются пылеосадительные камеры, в которых отделение частиц пыли от воздуха происходит под действием силы тяжести при прохождении воздуха через камеры. Эти устройства применяют для грубой очистки, их эффективность пылеулавливния составляет 50...60 %. Скорость движения воздуха в камере выбирается из условия обеспечения ламинарного движения и обычно составляет 0,2... 0,8 м/с. Аэродинамическое сопротивление камер невысоко и равно 80...100 Па. С целью повышения эффективности пылеулавливания камер они иногда разделяются по высоте полками, которые могут периодически встряхиваться для очистки от оседающей пыли. Для этой же цели применяют пылеосадительные камеры лабиринтного типа.

Центробежные пылеотделители - циклоны - находят более широкое применение, так как при сравнительно простой конструкции обеспечивают высокую степень обеспыливания воздуха (80...90%). Наиболее известные типы отечественных циклонов приведены на рис. 7.1.

Циклон состоит из цилиндрического корпуса, к которому тангенциально подведен входной патрубок; нижней конической части и выхлопного патрубка, размещаемого внутри корпуса соосно с ним. Входя в циклон со скоростью 1&...20 м/с, запыленный воздух приобретает вращательное движение и опускается вниз. При этом частицы пыли под действием сил инерции отбрасываются к стенкам аппарата и, скользя по ним вниз, попадают в бункер. Очищенный поток воздуха поворачивает вверх и через выхлопную трубу выходит из циклона.

Эффективность пылеулавливания возрастает с увеличением скорости входа воздуха в циклон, однако при слишком большой скорости возрастает турбулизация воздушной среды и эффективность циклона падает. Максимальную скорость воздуха принимают обычно не более 20 м/с. На эффективность этих аппаратов влияет и их диаметр: с его увеличением эффективность падает, поэтому диаметр циклонов принимается не более 1 м.

Гидравлическое сопротивление циклонов колеблется в пределах 500... 1100 Па. Оно зависит от конструкции аппарата и скорости воздуха на входе в него.

Рис. 7.1. Схемы циклонов основных типов:

а - НИИОГАЗ ЦН-15; б - СИОТ; в - ВЦНИИОТ; г - Гипродрев;

1 - входной патрубок; 2-выхлопная труба; 3-цилиндрический корпус; 4-коническая часть; 5-бункер; 6-улитка на выходе; 7-отверстие выхлопного патрубка; 8-коническая вставка; 9-перегородки

Конструкции современных циклонов довольно разнообразны, что объясняется многообразием условий их рационального применения. Наибольшее распространение получили циклоны типа НИИОГАЗ (несколько модификаций), СИОТ, ВЦНИИОТ, ЛИОТ, Гипродрева (см. рис. 7.1). Они различаются конструктивным оформлением, эффективностью пылезадержания и гидравлическим сопротивлением. Каждый циклон имеет свою рациональную область применения.

Циклон НИИОГАЗ отличается удлиненной конической частью и имеет малое гидравлическое сопротивление. Применяется он для улавливания неслипающихся и неволокнистых пылей.

Циклон СИОТ имеет корпус в виде конуса без цилиндрической части с входной трубой треугольного поперечного сечения. Используется он в тех случаях, когда имеются ограничения габаритов по высоте.

Циклон ВЦНИИОТ рекомендуется применять при улавливании абразивных пылей, так как он отличается малой изнашиваемостью стенок благодаря наличию обратно расположенного конуса внизу аппарата. Гидравлическое сопротивление его несколько выше, чем у циклонов других типов. Циклон ВЦНИИОТ можно использовать для улавливания волокнистых пылей (нижний внутренний конус в этом случае снимается).

Циклон ЛИОТ имеет развитую цилиндрическую часть и применяется для улавливания сухой неслипающейся пыли.

Циклон Гипродрева отличается бочкообразной формой, имеет малое гидравлическое сопротивление и используется в основном для улавливания отходов деревообработки.

Окончательный выбор того или иного типа циклона должен определяться по технико-экономическим показателям. В тех случаях, когда требуется очищать большие объемы воздуха, применяют групповые циклоны. В них аппараты подсоединяются параллельно входными патрубками к общему трубопроводу и устанавливаются на один бункер больших размеров. Необходимым условием эффективной работы циклонов в этом случае является исключение возможности перетекания воздуха из одного циклона в другой.

Рукавные фильтры для улавливания сухих неслипающихся пылей нашли широкое применение в промышленности (рис. 7.2). Основными рабочими элементами этих устройств являются матерчатые рукава, подвешиваемые к встряхивающему устройству и размещаемые в герметичном металлическом корпусе. Нижние открытые концы рукавов соединены с бункером. Воздух, проходя через ткань рукавов, оставляет на их поверхности пыль и удаляется из корпуса фильтра вентилятором. Накапливаясь на поверхности ткани в виде слоя, пыль сама становится фильтрующей средой и увеличивает эффективность пылезадержания фильтра. Очистка ткани рукавов от осевшей пыли производится путем их встряхивания, для чего устанавливается автоматически действующий встряхивающий меха низм. Во многих типах фильтров встряхивание рукавов сочетается с обратной их продувкой с целью лучшей очистки от пыли. Фильтры выполняются многосекционными. При отключении одной из секций для очистки рукавов остальные продолжают работать. Фильтры бывают всасывающего и напорного типов.

Рис. 7.2. Схема рукавного фильтра:

1 - входной патрубок; 2- рукав; 3- подвеска рукавов; 4- встряхивающий механизм;

5- выходной патрубок; 6 - бункер

Эффективность пылезадержания рукавных фильтров составляет 90...99 %. Воздушная нагрузка на ткань принимается в пределах 50...80 м 3 /(м 2 ·ч). Гидравлическое сопротивление фильтра в зависимости от степени запыления рукавов колеблется в пределах 1...2.5 кПа.

В последние годы разработаны фильтры, в которых рукава выполнены из стеклоткани или пористых керамических материалов. Очистка фильтрующих элементов в них производится сжатым воздухом. Такие фильтры можно применять для очистки высокотемпературных газов, отсасываемых от технологического оборудования. Из выпускаемых промышленностью рукавных фильтров наибольшее распространение получили фильтры типов ФВК, ФВВ, ФРМ, ФТНС и др.

Электрические фильтры (рис. 7.3) находят широкое применение на предприятиях строительной индустрии для очистки воздуха и промышленных газов от пыли. В этих аппаратах отделение пылевых частиц от воздуха производится под воздействием статического электрического поля высокой напряженности. В металлическом корпусе, стенки которых заземлены и являются осадительными электродами, размещены коронирующие электроды, соединенные с источником постоянного тока. Напряжение выпрямленного тока составляет 30...100 кВ.

Вокруг отрицательно заряженных электродов образуется электрическое поле. Проходящий через электрофильтр запыленный газ ионизируется, вследствие чего приобретают отрицательные заряды и пылевые частицы. Последние начинают перемещаться к стенкам фильтра, и, оседая на них, образуют плотный слой. Очистка осадительных электродов производится путем их остукивания или вибрации, а иногда путем смыва водой.

Рис. 7.3. Схема электрофильтра:

1 - входной патрубок; 2- корпус электрофильтра (осадительный электрод); 3-коронирующий электрод;

4- изоляторы; 5- выходной патрубок; 6- высоковольтный выпрямитель тока; 7- бункер

Эффективность пылеулавливания электрофильтров высокая, она достигает 99,9 %. Причем улавливаются частицы любых размеров, включая субмикронные при их высоких концентрациях в газах, достигающих 50 г/м 3 . Преимуществами этих аппаратов являются низкое гидравлическое сопротивление 100...150 Па, экономичность эксплуатации, возможность очищать газы при их высоких температурах (до450°С).

Для различных условий применения промышленностью выпускаются разные типы электрофильтров: УГ, ЭГА, УТТ, ОГП, УБ, УВВ, ПГ, ДМ и др.

Пылеуловители мокрого типа являются аппаратами глубокой очистки и отличаются высокой эффективностью пылеулавливания. Их применение целесообразно в том случае, когда улавливаемая пыль хорошо смачивается водой, не цементируется и не образует твердых, трудно разрушаемых отложений.

Из этого класса аппаратов наиболее часто применяют циклон с водяной пленкой ЛИОТ (рис. 7.4). Он имеет вертикальный цилиндрический корпус, в нижнюю часть которого тангенциально подводится очищаемый воздух. Последний закручивается и, вращаясь, поднимается в верхнюю часть аппарата, откуда отводится в атмосферу через выхлопной патрубок.

Рис. 7.4. Циклон с водяной пленкой:

1 - входной патрубок; 2 - корпус; 3 - выходной патрубок; 4 - устройство для подачи воды

При вращении потока из него под действием центробежных сил выделяются пылевые частицы, которые удаляются со стенок аппарата стекающей сверху водой. Последняя подается на стенки аппарата через водоподающее кольцо и несколько тангенциально расположенных трубок и стекает по стенкам аппарата в виде сплошной водяной пленки. Образующийся шлам собирается в бункере.

Эффективность пылеулавливания циклонов с водяной пленкой составляет 99,0...99,5 %, потери давления в аппарате равны 400...800 Па. При очистке от пыли агрессивных газов, разрушающих металлические стенки аппарата, последние с внутренней стороны армируются кислотостойкими покрытиями.

Высокими эксплуатационными показателями отличаются также пенные пылеуловители (рис. 7.5). Аппараты этого типа имеют цилиндрический металлический корпус, внутри которого горизонтально размещена решетка. Вода подается на решетку, через которую снизу пропускается очищаемый воздух. При этом на решетке образуется слой пены, высота которого зависит от высоты сливной перегородки (порога). Обычно она составляет 80... 100 мм. С целью снижения капельного уноса влаги в верхней части аппарата размещается каплеуловитель, выполненный в виде решетки с лабиринтными каналами.

Рис. 7.5. Пенный пылеуловитель:

1 - приемная коробка; 2- корпус; 3- решетка; 4- сливная перегородка (порог); 5-сливная коробка

1. Назовите основные источники и свойства пылей, выделяющихся на строительных площадках. 2. Каковы методы контроля запыленности воздуха? 3. Перечислите общие и индивидуальные средства защиты работающих от пыли. 4. Назовите основные виды пылеуловителей и фильтров, применяемых для очистки воздуха. 5. Каковы технико-экономические показатели, применяемые при оценке пылеуловителей и фильтров? 6. Объясните принцип действия и укажите области применения пылеосадительных камер и циклонов. 7. Как устроены и работают рукавные фильтры? 8. Объясните принцип действия электрических фильтров. 9. Как устроены пылеуловители мокрого типа и в каких случаях они применяются? 10. Объясните принцип действия пенных пылеуловителей.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-12

Сейчас компьютер есть практически в каждой семье. Это раньше вычислительная техника была интересна только энтузиастам, а теперь даже от школьников требуют, чтобы рефераты и многих другие домашние задания были распечатаны на принтере. У студентов дипломные и курсовые работы комиссия не будет рассматривать, если они написаны от руки, а не набраны на компьютере. На самом деле существует много причин, из-за которых в семье принимается решение о приобретении вычислительной машины. В результате получается, что сложное электронное устройство покупается человеком, который часто ничего не понимает в данной области. Соответственно, словосочетание «чистка ПК» кажется чем-то абстрактным.

Появление ноутбуков символизировало начало новой «эры»: теперь нет необходимости, как в случае полноценных персональных компьютеров, ориентироваться в разнообразии комплектующих, их взаимодействии и прочем. О том, от пыли, задумываются лишь те пользователи, уровень познаний которых выше среднего. Так, у многих покупка ноутбука и, к примеру, холодильника, ничем не отличается: выбираем параметры, приобретаем и пользуемся, пока не поломается. Увы, бытовая и вычислительная техника - это немного разные вещи (хотя процесс интеграции продолжается), поэтому следует знать, как от пыли. Отметим, что ноутбук - это тоже персональный компьютер, только уменьшенных габаритов и с некоторыми особенностями (более устойчивый к встряскам), поэтому все сказанное применимо как к первым, так и ко вторым.

О том, что в жилом помещении необходимо периодически выполнять уборку, знают все. Пыль появляется от вещей, с улицы, даже с человека постоянно сыпется обновляющийся эпителий. Все это оседает на вещах и, что важно, проникает в и оседает на его компонентах. Как следствие - перегрев и сбои в работе. Обычно вполне достаточно одной чистки в два года (зависит от условий эксплуатации).

Часто на форумах задается вопрос о том, как очистить компьютер от пыли. Ничего сложного в этом нет. Потребуется отвертка, кусочек сухой ваты, спичка, пылесос (позже на этом моменте остановимся подробнее), немного аккуратности и, конечно, знание, как очистить компьютер от пыли.

Основной момент: если не прошел, то платную чистку придется выполнять в сервисном центре. В ином случае все делаем самостоятельно: отключаем от корпуса провода всех и шнур питания, запоминаем их расположение, чтобы потом не путаться, размещаем системный блок на столе левой боковой крышкой вверх. Откручиваем два болта и сдвигаем крышку назад.

Основной «пылесборник» любого компьютера - это активная система охлаждения. Обычно лопасти вентилятора центрального процессора покрыты слоем пыли, а пространство между ребрами радиатора ею просто забито. Понятно, что ни о каком теплообмене не может идти и речи. Спичкой вычищаем радиатор и пылесосом (без щетки) собираем пыль. Лопасти вытираем ваткой. Находящиеся рядом на плате элементы аккуратно вытираем ваткой и также «проходимся» пылесосом.

Вытирать нужно всю пыль, ведь такая разборка делается не каждый день. Рекомендуется открутить блок питания (4 болта), снять с него крышку и также почистить от пыли. После всех манипуляций корпус собирается в обратной последовательности. Кто знает, как и делает это не первый раз, может выполнить процесс за 10-15 минут.

Теперь об упомянутых особенностях:

При использовании пылесоса нельзя прикасаться трубкой-насадкой к электронным компонентам во избежание электростатического разряда.

Идеальный вариант - портативный пылесос, например, автомобильный.

Пылесос можно заменить обычной спринцовкой. Выносим корпус на улицу (будет много пыли) и выдуваем ею весь собравшийся мусор. Останется немного «пройтись» ваткой.

Мы рассказывали, как очистить компьютер от цифрового мусора. В этой же – разберем, как избавиться от мусора буквально.

Подавляющее большинство компьютеров и ноутбуков при работе выделяют приличное количество тепла. Для того, чтобы эффективно охлаждать греющиеся элементы, используют воздушное охлаждение – с помощи кулеров внутрь корпуса засасывается холодный воздух, а выводится горячий, тем самым оберегая центральный процессор, видеокарту и прочие компоненты компьютера от перегрева.

Однако, вместе с воздухом в системник попадает не только прохлада. Увлекаемая воздушными потоками, наш компьютер атакует вездесущая пыль. Скапливаясь внутри, она нарушает циркуляцию воздуха, препятствует эффективному охлаждению, заставляя компоненты компьютера перегреваться, а кулеры – работать на максимальных оборотах, создавая невыносимый шум. Как почистить компьютер от пыли, чтобы потом не тратиться на ремонт и компьютерные компоненты – обсудим в этой статье.

Компьютер начал перегреваться и тормозить?

С подобной проблемой чаще всего сталкиваются владельцы ноутбуков – ранее быстрый и тихий лэптоп начал подолгу задумываться, громко обдувая окружающее пространство теплым воздухом и припекая колени горячим корпусом. Однако и персональные компьютеры подобная напасть не обошла стороной. Ведь по своей сути, компьютер – большой металлический ящик с отверстиями, куда активно засасывается воздух, а чаще всего помещают этот ящик – под стол, в темноту, в компанию к проводам, и в прочие труднодоступные для уборки места.

«…По своему составу пыль универсальна. Она состоит из мельчайших частиц порошкообразных материалов. Домашняя пыль обыкновенная на 35% состоит из минеральных частиц, на 19% — из чешуек человеческой кожи, еще 12% — бумажные волокна и частички текстиля, 7% — цветочная пыльца, 3% — сажа и 24% — частицы неизвестного происхождения…»

Как и всегда, лучший способ избавиться от подобной проблемы – профилактика. Куда проще с определенной периодичностью проводить чистку оборудования, чем потом это самое оборудование менять.

Подготовка к уборке

Итак, что же нам понадобится для того, чтобы очистить компьютер от пыли? Помимо внимательности и аккуратности, не так уж и много. Впрочем, это не мешает Вам завести себе ассистентку, которая будет вовремя подавать необходимые инструменты.

В основном, этого более чем достаточно, но Вы всегда можете приобрести специальный баллон со сжатым воздухом . Хватает его ненадолго, стоит он не очень дешево, но иногда может помочь. Лучше приберегите его для чистки клавиатуры.

Приступаем к профилактической чистке компьютера

В первую отключите компьютер. Не усыпите, а выключите, а потом полностью обесточьте, отключив из сети.

Сфотографируйте все провода на задней панели Вашего компьютера – в последствии это нам поможет все вернуть назад. Если нет возможности, подпишите провода.

Аккуратно снимите левую стенку компьютера – если смотреть на перед системника. Обычно она крепится сзади на болтах или защелках. Тут нам пригодится отвертка. Положите болтики подальше от пылесоса.

Для удобства аккуратно положите системник на правую сторону, материнской платой вверх. Сфотографируйте содержимое – очень важно все вернуть на свои места. А если компьютер не чистился годами, то подобным фото можно пугать юных программистов перед сном.

«На фото компьютер, стоявший в цеху сахарного завода. Кодовое имя: Леденец»

Включаем пылесос в розетку, отсоединяем все широкие щетки, включаем малую мощность и начинаем наводить порядок.

Важно! Пылесос может присосаться к материнской плате одним резким рывком, а это чревато повреждениями. Направляйте трубу твердой рукой.

С помощью кисточки получается неплохо вычищать радиаторы и труднодоступные места, а поднявшуюся пыль собирать пылесосом. Не забудьте аккуратно пройтись по всем кулерам (они от такого внимания начинают радостно вращаться), по блоку питания, радиаторам, прочистить фильтры от пыли, если такие есть. Некоторые фильтры можно снять и прополоскать в воде, а потом высушить на воздухе.

Аккуратно пройдитесь сухой тряпкой по плоским поверхностям, стараясь ничего не повредить. Соберите весь оставшийся мусор пылесосом.

Если Вам мешает видеокарта или диски, их можно легко открутить и извлечь. Обратите внимание, что видеокарта крепится не только болтом, но и специальной защелкой.

Осмотрите Ваш компьютер. Если его состояние вполне сносное, то можно приступать к сборке в обратном порядке. Если Вы откручивали какие-либо комплектующие, аккуратно ставим их назад, подсоединяем все что отсоединяли.

После уборки

Далее стоит проверить работоспособность устройства. Для этого подключим монитор, клавиатуру и питание. Включаем компьютер. Если системный блок радостно зашумел, а на экране появилось изображение загрузки системы, то все в порядке. Если компьютер не включается, проверьте его подключение к сети, включен ли блок питания, подключены ли все провода – сверьтесь с фотографией. Если же при включении издаются какие-то звуки — проверьте, все ли в порядке с подключенными устройствами. И обязательно сверьтесь с таблицами звуковых сигналов BIOS .

Если все в порядке, выключаем устройство, ставим и прикручиваем крышку на место, подключаем все провода назад. Проверяем, не остались ли у нас какие-либо лишние болтики.

Вот и все. Подобную профилактическую чистку стоит периодически проводить, а насколько часто – зависит от внешних факторов.

Но что делать, если пыль отсутствует, а компьютер все равно греется? Возможно, в этом случае может потребоваться замена термопасты. Но подробнее об этом мы расскажем в следующей статье —