Схема подключения стабилизатора L7805CV, описание характеристик. Стабилизаторы для питания микросхем Стабилизаторы для питания микросхем

В этой статье мы рассмотрим возможности и способы питания цифровых устройств собранных своими руками, в частности на . Ни для кого не секрет, что залогом успешной работы любого устройства, является его правильное запитывание. Разумеется, блок питания должен быть способен выдавать требуемую для питания устройства мощность, иметь на выходе электролитический конденсатор большой емкости, для сглаживания пульсаций и желательно быть стабилизированным.

Последнее подчеркну особенно, разные нестабилизированные блоки питания типа зарядных устройств от сотовых телефонов, роутеров и подобной техники не подходят для питания микроконтроллеров и других цифровых устройств напрямую. Так как напряжение на выходе таких блоков питания меняется, в зависимости от мощности подключенной нагрузки. Исключение составляют стабилизированные зарядные устройства, с выходом USB, выдающие на выходе 5 вольт, вроде зарядок от смартфонов.

Многих начинающих изучать электронику, да и просто интересующихся, думаю шокировал тот факт: на адаптере питания например от приставки Денди , да и любом другом подобном нестабилизированном может быть написано 9 вольт DC (или постоянный ток), а при измерении мультиметром щупами подключенными к контактам штекера БП на экране мультиметра все 14, а то и 16. Такой блок питания может использоваться при желании для питания цифровых устройств, но должен быть собран стабилизатор на микросхеме 7805, либо КРЕН5. Ниже на фото микросхема L7805CV в корпусе ТО-220.

Такой стабилизатор имеет легкую схему подключения, из обвеса микросхемы, то есть из тех деталей которые необходимы для её работы нам требуются всего 2 керамических конденсатора на 0.33 мкф и 0.1 мкф. Схема подключения многим известна и взята из Даташита на микросхему:

Соответственно на вход такого стабилизатора мы подаем напряжение, или соединяем его с плюсом блока питания. А минус соединяем с минусом микросхемы, и подаем напрямую на выход.

И получаем на выходе, требуемые нам стабильные 5 Вольт, к которым при желании, если сделать соответствующий разъем, можно подключать кабель USB и заряжать телефон, mp3 плейер или любое другое устройство с возможностью заряда от USB порта.

Стабилизатор снижение с 12 до 5 вольт - схема

Автомобильное зарядное устройство с выходом USB всем давно известно. Внутри оно устроено по такому же принципу, то есть стабилизатор, 2 конденсатора и 2 разъема.

Как пример для желающих собрать подобное зарядное своими руками или починить существующее приведу его схему, дополненную индикацией включения на светодиоде:

Цоколевка микросхемы 7805 в корпусе ТО-220 изображена на следующих рисунках. При сборке, следует помнить о том, что цоколевка у микросхем в разных корпусах отличается:

При покупке микросхемы в радиомагазине, следует спрашивать стабилизатор, как L7805CV в корпусе ТО-220. Эта микросхема может работать без радиатора при токе до 1 ампера. Если требуется работа при больших токах, микросхему нужно установить на радиатор.

Разумеется, эта микросхема существует и в других корпусах, например ТО-92, знакомый всем по маломощным транзисторам. Этот стабилизатор работает при токах до 100 миллиампер. Минимальное напряжение на входе, при котором стабилизатор начинает работать, составляет 6.7 вольт, стандартное от 7 вольт. Фото микросхемы в корпусе ТО-92 приведено ниже:

Цоколевка микросхемы, в корпусе ТО-92, как уже было написано выше, отличается от цоколевки микросхемы в корпусе ТО-220. Её мы можем видеть на следующем рисунке, как из него становится ясно, что ножки расположены зеркально, по отношению к ТО-220:

Разумеется, стабилизаторы выпускают на разное напряжение, например 12 вольт, 3.3 вольта и другие. Главное не забывать, что входное напряжение, должно быть минимум на 1.7 - 3 вольта больше выходного.

Микросхема 7833 - схема

На следующем рисунке приведена цоколевка стабилизатора 7833 в корпусе ТО-92. Такие стабилизаторы применяются для запитывания в устройствах на микроконтроллерах дисплеев, карт памяти и другой периферии, требующей более низковольтного питания, чем 5 вольт, основное питание микроконтроллера.

Стабилизатор для питания МК

Я пользуюсь для запитывания собираемых и отлаживаемых на макетной плате устройств на микроконтроллерах, стабилизатором в корпусе, как на фото выше. Питание подается от нестабилизированного адаптера через гнездо на плате устройства. Его принципиальная схема приведена на рисунке далее:

При подключении микросхемы нужно строго соответствовать цоколевке. Если ножки спутать, даже одного включения достаточно, чтобы вывести стабилизатор из строя, так что при включении нужно быть внимательным. Автор материала - AKV.

Принципиальная схема простого и надежного стабилизатора напряжения из 8...15В в стабильные 5В. Построен на основе интегральной микросхемы L7805. Стабилизатор подойдет для питания цифровой техники, микроконтроллеров, для зарядки телефонов и других устройств от стабильного напряжения 5В.

Микросхемы серии 78ХХ содержат несколько встроенных защит:

  • Защита по напряжению и току на выходе;
  • Термозащита (от перегрева выше +125 °С);
  • Встроенный мощный диод (защищает от воздействия обратного тока).

Принципиальная схема

На рисунке 1 приведена принципиальная схема самодельного стабилизатора напряжения на микросхеме L7805. Схема содержит не большое количество деталей, которое можно еще больше сократить если не нужна защита от переполюсовки на входе (D1) и индикация напряжения на выходе (R1, LED1).

Рис. 1. Принципиальная схема простого и надежного стабилизатора напряжения на 5В (L7805).

Детали

В качестве D1 можно установить диод Шоттки, в схеме он выполняет роль защиты от переполюсовки по питанию или же роль выпрямителя если схема подключена напрямую к вторичной обмотке понижающего сетевого трансформатора. Диод D2 защищает выход микросхемы от обратного напряжения.

Конденсаторы C2 и C3 - пленочные или керамические, не полярные. Электролитический конденсатор C1 можно установить с емкостью от 50 мкФ и более, а для C4 будет достаточно 10-22мкФ. Светодиод LED1 служит для индикации наличия напряжения 5В, здесь подойдет любой светодиод с зеленым цветом свечения.

Данная схема простая и проверенная временем. Вместо микросхемы L7805 можно установить другие микросхемы данной серии и таким образом получить стабилизатор напряжения на другие напряжения.


Эта небольшая статья посвящена трехвыводному стабилизатору напряжения L7805 . Микросхема выпускается в двух видах, в пластмассе - ТО-220 и металле - ТО-3. Три вывода, смотреть слева на право - ввод, минус, выход.

Последних две цифры указывают на стабилизированное напряжение микросхемы - 7805-5 вольт соответственно, 7806-6в.... 7824-наверняка уже догадываемся сколько. Также вас могут заинтересовать жилетки для хора мальчиков , подробнее на сайте по ссылке.
Вот схема подключения стабилизатора , которая подходит для всех микросхем этой серии:

На конденсаторы малой емкости не смотрим, желательно поставить побольше.
Ну а это стабилизатор изнутри:


Офигеть, да? И все это помещается.... .Чудо техники.

Итак, нас интересуют вот эти характеристики. Output voltage - выходное напряжение. Input voltage - входное напряжение. Ищем наш 7805. Он выдает нам выходное напряжение 5 Вольт. Желательным входным напряжением производители отметили напряжение в 10 Вольт. Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено. Для электронных безделушек доли вольт не ощущаются, но для презеционной (точной) аппаратуры лучше все таки собирать свои схемы. Здесь мы видим, что стабилизатор 7805 может нам выдать одно из напряжений диапазона 4.75 - 5.25 Вольт, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать одного Ампера. Нестабилизированное постоянное напряжение может "колыхаться" в диапазоне от 7.5 и до 20 Вольт, при это на выходе будет всегда 5 Вольт. В этом то и есть большой плюс стабилизаторов.
При большой нагрузке, а эта микросхема способна дать мощность аж 15 Ватт, стаб лучше снабдить радиатором и по возможности или по хотению, для большего и быстрого охлаждения, прикрутить ему кулер, как в компе.
Вот и нормальная схема стабилизатора:

Технические параметры

Корпус... to-220
Максимальный ток нагрузки, А... 1.5
Диапазон допустимых входных напряжений, В... 40
Выходное напряжение, В... 5
в помощь.

Для того, чтобы стабилизатор не перегревать, нужно придерживаться нужного минимального напряжения на входе микросхемы, то есть если у нас L7805, то на вход пускаем 7-8 вольт, если 12 - 14-15 вольт.
Это связано с тем, что излишнюю мощность стабилизатор будет рассеивать на себе. Как вы помните, формула мощности P=IU, где U - напряжение, а I - сила тока. Следовательно, чем больше входное напряжение стабилизатора, тем больше мощность, потребляемая им. А излишняя мощность - это и есть нагрев. В результате нагрева такой стабилизатор может перегреться и войти в состояние защиты, при котором дальнейшая работа стабилизатора прекращается.

Рис.1

Недавно нашел в закромах интересный стабилизатор напряжения 7805UC (аналог UA7805) в корпусе TO-220 рис.1, который когда-то использовался в игровой приставке. Нарыл в Интернете даташит на сей девайс: регулятор обеспечивает стабильное выходное напряжение в пределах 4.8 до 5.2В и ток 1.5А при входном напряжении от 7 до 25В; рабочие температуры от 0 до 125 о С; выходное сопротивление 0.017 Ом. 7805UC может обеспечить пиковые нагрузки по току 2.2А.
В регуляторе реализована возможность управления переменным напряжением (положительное импульсное напряжение) в пределах от 10Гц до 100кГц с малым коэффициентом шумов - 40 мкВ.
Стабилизатор имеет внутренний ограничитель тока при коротком замыкании, а также защиту при тепловой перегрузке. Я думаю это позволит создать хороший лабораторный блок питания (БП), либо стабилизированный блок на напряжение 5В для устройств используемые в условиях в неприемлемых для большинства БП. Особенно если напряжение в сети любит скакать от 150 до 250В. В таких условиях не все БП смогут выдавать рассчитанное напряжение, когда входное напряжение с понижающего трансформатора может плавать от 7 до 20В.


Рис.2

На рис.2 приведена внутренняя архитектура микросхемы. Богатая начинка позволяет обходится скромной обвязкой - это экономит деньги, время и размеры при сборке.


рис.3 типовая схема с фиксированным напряжением и рис.4 регулируемая схема

Типовая схема подключения отображена на рис.3. Регулируемый вариант на рис.4


Рис.5

Блок питание на основе 7805UC рис.5. Необходим понижающий трансформатор ТР1 на 7..25В с выходным током 1-1.5А. Высоковольтный выключатель (1А) и предохранитель 0.5А. Для диодного моста рекомендую использовать 4 диода КД226А, каждый рассчитан на 2А, отказоустойчивые. Конденсаторы С1 и С2 электролитные для напряжения 15В. С1 100мкФх15В первичный фильтр - компенсирует импульсные скачки напряжения от трансформатора. Стабилизатор может сильно греться и необходимо установить радиатор, который будет рассеивать лишнее тепло (чем больше, тем лучше).

Почти все радиолюбительские самоделки и конструкции имеют в своем составе стабилизированный источник питания. А если ваша схема работает от напряжения питания 5 вольт, то лучшим вариантом будет использование трехвыводного интегрального стабилизатора 78L05

В природе существуют две разновидности 7805 с током нагрузки до 1А и более маломощный 78L05 с током нагрузки до 0,1А. Кроме того промежуточным вариантом является микросхема 78M05 с током нагрузки до 0,5А. Полными отечественными аналогами микросхемы являются для 78L05 КР1157ЕН5 и 7805 для 142ЕН5


Емкость С1 на входе требуется для срезания высокочастотных помех при подачи входного напряжения. Емкость С2 но уже на выходе стабилизатора задает стабильность напряжения при резком изменении тока нагрузки, а так же существенно снижает степень пульсаций.

При проектирование требуется помнить, что для нормальной работы стабилизатора 78L05 напряжение на входе должно быть не ниже 7 и не выше 20 вольт.

Схема управления позволяет подавать и отключать питание идущее на стабилизатор напряжения. Управляющий сигнал должен быть уровня TTL или CMOS. Схема может использоваться в роли коммутатора питания под управлением микроконтроллера.


Ниже рассмотрим подборку наиболее интересные примеры практического использования интегрального стабилизатора 78L05.

Этак конструкция лабораторного блока питания отличается своей изысканностью, в первую очередь из-за нестандартного использования микросхемы TDA2030, источником стабилизированного напряжения которого является 78L05.

TDA2030 включена как неинвертирующий усилитель. При таком подсоединении коэффициент усиления рассчитывается по формуле 1+R4/R3 и равен 6. Поэтому, напряжение на выходе блока питания, при регулировании номинала сопротивления R2, будет плавно изменятся от 0 и до 30 вольт.

Повышенная стабильность, отсутствие перегрева радиокомпонентов, вот главные достоинства этой конструкции.

Индикатор включения выполнен на светодиоде HL1, вместо трансформатора использована гасящая цепь на компонентах C1 и R1, диодный выпрямительный мост на специализированной сборке, конденсаторы применяются для минимизации пульсаций, стабилитрон на 9 вольт и стабилизатор напряжения 78L05. Необходимость использования стабилитрона обуславливается тем, что напряжение с выхода диодного моста около 100 вольт и это может повредить стабилизатор 78L05.

Диапазон напряжений в этой схеме от 5 до 20 вольт. Изменение выходного напряжения осуществляется переменным сопротивлением R2. Максимальный ток нагрузки около 1,5 ампер.

Устройство способно заряжать разные типы аккумуляторных батарей: литиевые, никелевые, а так же свинцовые аккумуляторы, применяемые в бесперебойниках.

При заряде аккумуляторных батарей нужен стабильный тока зарядки, который должен быть около 1/10 части от емкости батареи. Постоянство зарядного тока задает стабилизатор 78L05 . У зарядного устройства четыре диапазона тока зарядки: 50, пять вольт, то для получения тока 50 мА требуется сопротивление на 100 Ом исходя из закона Ома. Для удобства конструкция ЗУ имеет индикатор, выполненный на двух биполярных транзисторах и светодиоде. Светодиод тухнет по окончанию зарядки аккумуляторной батареи.