Работы по измерению сопротивления изоляции. Измерение сопротивления изоляции: руководство! Методы тестирования и интерпретация результатов

Сопротивление изоляции постоянному току является основным показателем состояния изоляции, и его измерение является неотъемлемой частью испытаний всех видов электрооборудования и электрических цепей.

Нормы проверок и испытаний изоляции электрооборудования , определяются ГОСТ, и другими директивными материалами.

Сопротивление изоляции практически во всех случаях измеряется мегомметром - прибором, состоящим из источника напряжения - генератора постоянного тока чаще всего с ручным приводом, магнитоэлектрического логометра и добавочных сопротивлений.

В электромеханических приборах источником питания служит электрома-шинный генератор, приводимый во вращение рукояткой, измерительная система выполнена в виде магнитоэлектрического логометра.

В других типах мегаомметров в качестве измерительного элемента используется вольтметр, фиксирующий падение напряжения на образцовом резисторе от тока в измеряемом сопротивлении. Измерительная система электронных мегаомметров строится на двух операционных усилителях с логарифмической характеристикой, выходной ток одного из которых определяется током объекта, а другого - падением напряжения на нем.

Измерительный прибор включается на разность этих токов, а шкала выполняется в логарифмическом масштабе, что дает возможность градуировать ее в единицах сопротивления. Результат измерения мегаомметрами всех этих систем практически не зависит от напряжения. Однако в некоторых случаях (испытание изоляции, измерение коэффициента абсорбции) следует учитывать, что при малых сопротивлениях изоляции напряжение на зажимах мегаомметра может быть существенно ниже номинального из-за высокого сопротивления ограничивающего резистора, служащего для защиты источника питания от перегрузки.

Выходное сопротивление мегаомметра и истинное значение напряжения на объекте можно рассчитать, зная ток короткого замыкания прибора, в частности: 0,5 для мегаомметров типа Ф4102; 1,0 - для Ф4108 и 0,3 мА - для ЭС0202.

Поскольку в мегомметрах есть источник постоянного тока, то сопротивление изоляции можно измерять при значительном напряжении (2500 В в мегомметрах типов МС-05, М4100/5 и Ф4100) и для некоторых видов электроаппаратуры одновременно испытывать изоляцию повышенным напряжением. Однако следует иметь в виду, что при подключении мегомметра к аппарату с пониженным сопротивлением изоляции напряжение на выводах мегомметра также понижается.

Измерение сопротивления изоляции с помощью мегомметра

Перед началом измерений необходимо убедиться, что на испытываемом объекте нет напряжения, тщательно очистить изоляцию от пыли и грязи и на 2 - 3 мин заземлить объект для снятия с него возможных остаточных зарядов. Измерения следует производить при устойчивом положении стрелки прибора. Для этого нужно быстро, но равномерно вращать ручку генератора. Сопротивление изоляции определяется показанием стрелки прибора мегомметра. После окончания измерений испытываемый объект необходимо разрядить. Для присоединения мегомметра к испытываемому аппарату или линии следует применять раздельные провода с большим со противлением изоляции (обычно не меньше 100 МОм).

Перед пользованием мегомметр следует подвергнуть контрольной проверке, которая заключается в проверке показания по шкале при разомкнутых и короткозамкнутых проводах. В первом случае стрелка должна находиться у отметки шкалы «бесконечность», во втором - у нуля.

Для того чтобы на показания мегомметра не оказывали влияния токи утечки по поверхности изоляции, особенно при проведении измерений в сырую погоду, мегомметр подключают к измеряемому объекту с использованием зажима Э (экран) мегомметра. При такой схеме измерений токи утечки по поверхности изоляции отводятся в землю, минуя обмотку логометра.

Значение сопротивления изоляции в большой степени зависит от температуры . Сопротивление изоляции следует измерять при температуре изоляции не ниже + 5°С, кроме случаев, оговоренных специальными инструкциями. При более низких температурах результаты измерения из-за нестабильного состояния влаги не отражают истинной характеристики изоляции.

В некоторых установках постоянного тока (аккумуляторных батареях, генераторах постоянного тока и т. п.) можно контролировать изоляцию с помощью вольтметра с (30 000 - 50 000 Ом). При этом измеряют три напряжения - между полюсами (U) и между каждым из полюсов и землей.

Описание процесса измерений сопротивления изоляции

В процессе работы электроустановок изоляция подвергается воздействию окружающей среды, что неизменно сказывается на ее свойствах. Кроме того, из - за нагрева токоведущих проводов, она со временем изнашивается.

Из всего вышеперечисленного вполне очевидно, что только при регулярных измерениях параметров изоляции возможна безотказная работа электроустановок.

Основным параметром характеризующим изоляцию является - сопротивление изоляции постоянному току. Данный параметр нуждается в регулярном измерении для стабильной работы любой системы.

Кроме того, правилами эксплуатации электрооборудования определена периодичность замеров сопротивления изоляции - не менее одного раза за три года, но специалисты рекомендуют делать это чаще. Почему? Попробуем обосновать данную необходимость.

В первую очередь, регулярные измерения сопротивления изоляции обеспечивают безопасность ваших людей, они помогут предотвратить многие несчастные случаи, в том числе и в результате возгорания.

Второй немаловажный момент это, естественно, возможные убытки, к которым могут привести поломки в системе электроснабжения.

Ну и конечно, последнее, что необходимо отметить, - данные замеры помогут вам минимизировать, а то и вовсе избежать потерь электроэнергии, благодаря чему вы сэкономите изрядные средства.

Измерение сопротивления изоляции кабеля осуществляют между фазными проводниками, фазными проводниками и нейтральными, фазными проводниками и землей, нейтральными проводниками и землей. Если проверка проводится в соответствии с нормами ПТЭЭП, то кабель обязательно демонтируется. О ссылках ПТЭЭП вы можете прочитать в соответствующем разделе меню на нашем сайте.

Измерение сопротивления изоляции под напряжением

Результатом замеров сопротивления изоляции является сопротивление характеризующее ток утечки, возникающий между точками электроустановки при включении прибора под напряжение.

Такие измерения производятся специальными приборами, называемыми мегаомметрами. Это приборы предназначенные для измерения очень больших значений сопротивления, и генерирующие высокие значения напряжения (от 500 до 2500 Вольт) для возможности измерения сопротивления на участках с таким напряжением.

Параметры характеризующие сопротивление изоляции

1. Сопротивление изоляции постоянному току - Ruз.

Как правило, со временем возникают внешние дефекты, из за которых сопротивление изоляции сильно снижается. Замер сопротивления изоляции в данном случае производится так: к изоляции прилагается выпрямляющее напряжение, во время воздействия которого измеряется утечка тока проходящего через изоляцию.

Rиз = Uпр.в./Iут

В данной формуле: Rиз - сопротивление изоляции, Uпр.в. - выпрямляющее напряжение, Iут - ток утечки.

2. Коэффициент абсорбции изоляции.

Данный коэффициент идеально определяет увлажнение изоляции, он представляет собой отношение сопротивления изоляции измеренного через 60 секунд, после приложения напряжения мегаомметра, к сопротивлению изоляции измеренному через 15 секунд, после приложения. Обозначаются данные сопротивления соответственно R60 и R15.

Кабс = R60/R15

Важно знать, что при влажной изоляции коэффициент абсорбции приближен к единице, а при сухой изоляции - значительно ее превышает. Это происходит из - за того, что при сухой изоляции время заряда абсорционной емкости достаточно велико, а для влажной, соответственно - мало.

3. Коэффициент поляризации изоляции.

Коэффициент поляризации определяет степень старения изоляции. Указывает способность частиц перемещаться под действием электрического поля. Он представляет собой отношение сопротивления изоляции - измеренного через 600 секунд после приложения напряжения мегаомметра к сопротивлению измеренному через 60 секунд.

Кпол = R600/ R60.

Как правило, если коэффициент поляризации меньше единицы, то изоляция является опасной. Хорошая изоляция имеет Кпол не менее 2х, в то время как от 4х начинается идеальная изоляция.

Замер сопротивления изоляции

Опишем вкратце как происходит процесс замера. Прежде всего, необходимо убедиться, что на проверяемом оборудовании нет напряжения. После этого, проверяемое оборудование очищается от грязи и пыли, и заземляется на несколько минут - для снятия остаточных зарядов.

Далее, сопротивление изоляции будет определяться показанием стрелки прибора мегаомметра, присоединенному к измеряемому прибору проводами обладающими большим сопротивлением изоляции. По завершению измерений проверяемый объект необходимо разрядить

По окончанию всех работ составляется протокол проверки сопротивления изоляции проводов, кабелей и обмоток.

Закажите у нас данную услугу и вы сможете работать спокойно!

На заметку:

Не следует проводить замеры сопротивления изоляции, если температура менее 10°С. В следствии нестабильности влаги возможно искажение результатов измерений!


Проведение замеров сопротивления изоляции при температура менее 10°С не рекомендуется из-за нестабильности влаги и, как следствие, - искажения результатов измерений.

1. ЦЕЛЬ ПРОВЕДЕНИЯ ИЗМЕРЕНИЙ

Измерения проводятся с целью проверки соответствия сопротивления изоляции установленным нормам.

2. МЕРЫ БЕЗОПАСНОСТИ

2.1. Организационные мероприятия

В электроустановках напряжением до 1000 В измерения выполняются по распоряжению двумя работниками, один из которых должен иметь группу по электробезопасности не ниже III.

В электроустановках до 1000 В, расположенных в помещениях, кроме особо опасных в отношении поражения электрическим током, работник, имеющий группу III и право быть производителем работ, может проводить измерения единолично.

Измерения сопротивления изоляции ротора работающего генератора разрешается выполнять по распоряжению двумя работниками, имеющими IV и III группу по электробезопасности.

В случаях, когда измерения мегаомметром входят в содержание работ по испытаниям (например испытания электрооборудования повышенным напряжением промышленной частоты), оговаривать эти измерения в наряде или распоряжении не требуется.

2.2. Технические мероприятия

Перечень необходимых технических мероприятий определяет лицо, выдающее наряд или распоряжение в соответствии с разделом 3 и главой 5.4. МПБЭЭ. Измерения сопротивления изоляции мегаомметром должно осуществляться на отключенных токоведущих частях, с которых снят заряд путем предварительного их заземления. Заземление с токоведущих частей следует снимать только после подключения мегаомметра.

3. НОРМИРУЕМЫЕ ВЕЛИЧИНЫ

Периодичность испытаний и минимальная допустимая величина сопротивления изоляции должны соответствовать указанным в нормах испытаний электрооборудования и аппаратов Правил устройства электроустановок (ПУЭ), Правил технической эксплуатации электроустановок потребителей (ПТЭЭП).

В соответствии с ГОСТ Р 50571.16-99 нормируемые величины сопротивления изоляции электроустановок зданий приведены в таблице 9.

Таблица 1

Номинальное напряжение цепи, В

Испытательное напряжение

Сопротивление изоляции,

постоянного тока, В

МОм

Системы безопасного сверхнизкого напряжения (БССН) и

0,25

функционального сверхнизкого напряжения (ФССН)

До 500 включительно, кроме систем БССН и ФССН

0,5 *

Выше 500

1000

1,0


* Сопротивление стационарных бытовых электрических плит должно быть не менее 1 МОм.


Вместе с тем, в соответствии с гл. 1.8 ПУЭ для электроустановок, напряжением до 1000 В допустимые значения сопротивления изоляции представлены в таблице 2.

Наименьшее

Испытуемый элемент

Напряжение

допустимое значение

мегаомметра, В

сопротивления

изоляции, МОм

Шины постоянного тока на щитах управления и в распределительных

500 - 1000

устройствах (при отсоединенных цепях)

Вторичные цепи каждого присоединения и цепи питания приводов

500 - 1000

выключателей и разъединителей 1

Цепи управления, защиты, автоматики и измерений, а также цепи возбуждения

500 - 1000

машин постоянного тока, присоединенные к силовым цепям

4. Вторичные цепи и элементы при питании от отдельного источника или через разделительный трансформатор, рассчитанные на рабочее напряжение 60 В и ниже 2

Электропроводки, в том числе осветительные сети 3

1000

Распределительные устройства 4 , щиты и токопроводы (шинопроводы)

500 - 1000

Измерение производится со всеми присоединенными аппаратами (катушки проводов, контакторы, пускатели, автоматические выключатели, реле, приборы, вторичные обмотки трансформаторов тока и напряжения и т.п.)

Должны быть приняты меры для предотвращения повреждения устройств, в особенности микроэлектронных и полупроводниковых элементов.

Сопротивление изоляции измеряется между каждым проводом и землей, а также между каждыми двумя проводами.

Измеряется сопротивление изоляции каждой секции распределительного устройства.

Анализ этих требований показывает противоречия в части тестирующего напряжения и сопротивления изоляции для вторичных цепей напряжением до 60 В (ПУЭ, гл. 1.8) и систем БССН и ФССН, входящих в этот диапазон (50 В и ниже), согласно ГОСТ 50571.16-99.

Кроме того сопротивление внутренних цепей вводно-распределительных устройств, этажных и квартирных щитков жилых и общественных зданий в холодном состоянии в соответствии с требованиями ГОСТ 51732-2001 и ГОСТ 51628-2000 должно быть не менее 10 МОм (по ПУЭ, гл. 1.8 - не менее 0,5 МОм).

В данной ситуации при определении нормированных величин сопротивления изоляции до введения в действие соответствующих технических регламентов следует руководствоваться более четкими требованиями.

4. ПРИМЕНЯЕМЫЕ ПРИБОРЫ

Для изменения сопротивления изоляции будет применяться мегаомметр Е6-32 с испытательным напряжением от 50 до 2500 В (шаг установки 10 В).

Пределы допускаемой основной абсолютной погрешности установки испытательного напряжения, %: от 0 до плюс 15.

Ток в измерительной цепи при коротком замыкании не более 2 мА.

Диапазоны измерения сопротивления

Пределы допускаемой основной абсолютной погрешности

от 1кОм до 999 МОм

(0,03×R+ 3 е.м.р.)

от 1,00 до 9,99 ГОм

(0,05×R + 5 е.м.р.) (испытательные напряжения менее 250 В)

от 10,0 до 99,9 ГОм

(0,05×R + 5 е.м.р.) (испытательные напряжения не менее 500 В)

от 100 до 999 ГОм

(0,15×R + 10 е.м.р.) (испытательные напряжения не менее 500 В)

Мегаомметр обеспечивает автоматическое переключение диапазонов и определение единиц измерения.

Погрешность нормирована при использовании кабеля измерительного РЛПА.685551.001.

5. ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ ИЗОЛЯЦИИ ЭЛЕКТРООБОРУДОВАНИЯ

5.1. Измерение сопротивления изоляции силовых кабелей и электропроводок

При измерении сопротивления изоляции необходимо учитывать следующее:

- измерение сопротивления изоляции кабелей (за исключением кабелей бронированных) сечением до 16 мм 2 производится мегаометром на 1000 В, а выше 16 мм 2 и бронированных - мегаометром на 2500 В; измерение сопротивления изоляции проводов всех сечений производится мегаометром на 1000 В.

При этом необходимо производить следующие замеры:

- на 2- и 3-проводных линиях - три замера: L-N, N-РЕ, L-PE;

На 4-проводных линиях - 4 замера: L 1 -L 2 L 3 PEN, L 2 -L 3 L 1 PEN, L 3 -L 1 L 2 PEN, PEN-L 1 L 2 L 3 , или 6 замеров: L 1 -L 2 , L 2 -L 3 , L 1 -L 3 , L 1 -PEN, L 2 -PEN, L 3 -PEN;

На 5-проводных линиях - 5 замеров: L 1 -L 2 L 3 NPE, L 2 -L 1 L 3 NPE, L 3 -L 1 L 2 NPE, N-L 1 L 2 L 3 PE, PE-NL 1 L 2 L 3 , или 10 замеров: L 1 -L 2 , L 2 -L 3 , L 1 -L 3 , L 1 -N, L 2 -N, L 3 -N, L 1 -PE, L 2 -РЕ,L 3 -РЕ, N-PE.

Если электропроводки, находящиеся в эксплуатации, имеют сопротивление изоляции менее 1 МОм, то заключение об их пригодности делается после испытания их переменным током промышленной частоты напряжением 1 кВ в соответствии с приведенными в данном издании рекомендациями.

5.2. Измерение сопротивления изоляции силового электрооборудования

Значение сопротивления изоляции электрических машин и аппаратов в большой степени зависит от температуры. Замеры следует производить при температуре изоляции не ниже +5 С кроме случаев, оговоренных специальными инструкциями. При более низких температурах результаты измерения из-за нестабильного состояния влаги не отражают истинной характеристики изоляции. При существенных различиях между результатами измерений на месте монтажа и данными завода-изготовителя, обусловленных разностью температур, при которых проводились измерения, следует откорректировать эти результаты по указаниям изготовителя.

Степень увлажненности изоляции характеризуется коэффициентом абсорбции, равным отношению измеренного сопротивления изоляции через 60 секунд после приложения напряжения мегаомметра (R 60) к измеренному сопротивлению изоляции через 15 секунд (R 15), при этом:

К абс = R 60 / R 15

При измерении сопротивления изоляции силовых трансформаторов используются мегаомметры с выходным напряжением 2500 В. Измерения проводятся между каждой обмоткой и корпусом и между обмотками трансформатора. При этом R 60 должно быть приведено к результатам заводских испытаний в зависимости от разности температур, при которых проводились испытания. Значение коэффициента абсорбции должно отличаться (в сторону уменьшения) от заводских данных не более, чем на 20 %, а его величина должна быть не ниже 1,3 при температуре 10 - 30 С. При невыполнении этих условий трансформатор подлежит сушке. Минимально допустимое сопротивление изоляции для установок, находящихся в эксплуатации, приведены в таблице 11.

Сопротивление изоляции автоматических выключателей и УЗО производятся:

1. Между каждым выводом полюса и соединенными между собой противоположными выводами полюсов при разомкнутом состоянии выключателя или УЗО.

2. Между каждым разноименным полюсом и соединенными между собой оставшимися полюсами при замкнутом состоянии выключателя или УЗО.

3. Между всеми соединенными между собой полюсами и корпусом, обернутым металлической фольгой. При этом для автоматических выключателей бытового и аналогичного назначения (ГОСТ Р 50345-99) и

УЗО при измерениях по пп. 1, 2 сопротивление изоляции должно быть не менее 2 Мом, по п. 3 - не менее 5 Мом.

Для остальных автоматических выключателей (ГОСТ Р 50030.2-99) во всех случаях сопротивление изоляции должно быть не менее 0,5 Мом.

Таблица 3

Минимально допустимые значения сопротивления изоляции электроустановок напряжением до 1000В

(Приложение 3; 3.1 ПТЭЭП)

Наименование элемента

Напряжение

Сопротивление

Примечание

мегаомметра, В

изоляции, МОм

Электроизделия и аппараты на

номинальное напряжение, В:

до 50

Должно

свыше 50 до 100

соответствовать

свыше 100 до 380

500 - 1000

указаниям

свыше 380

1000 - 2500

изготовителей,

но не менее 0,5

Распределительные устройства, щиты

1000 - 2500

Не менее 1

При измерениях полупроводниковые приборы в

и токопроводы

изделиях должны быть зашунтированы

Электропроводки, в том числе

1000

Не менее 0,5

Измерения сопротивления изоляции в особо

осветительные сети

опасных помещениях и наружных помещениях

производятся 1 раз в год. В остальных случаях

измерения производятся 1 раз в 3 года. При

измерениях в силовых цепях должны быть приняты

меры для предотвращения повреждения устройств, в особенности микроэлектронных и полупроводниковых приборов.

полупроводниковых приборов. В осветительных сетях должны быть вывинчены лампы, штепсельные розетки и выключатели присоединены.

Вторичные цепи распределительных

1000 - 2500

Не менее 1

Измерения

производятся

со

всеми

устройств, цепи питания приводов

присоединенными

аппаратами

(катушки,

выключателей и разъединителей, цепи

контакторы, пускатели, выключатели, реле,

управления, защиты, автоматики,

приборы, вторичные обмотки трансформаторов

телемеханики и т.п.

напряжения и тока)

Краны и лифты

1000

Не менее 0,5

Производится не реже 1 раз в год

Стационарные электроплиты

1000

Не менее 0,5

Производится при нагретом состоянии плиты не

реже 1 раз в год

Шинки постоянного тока и шинки

500 - 1000

Не менее 10

Производится при отсоединенных цепях

напряжения на щитах управления

Цепи управления, защиты,

500 - 1000

Не менее 1

Сопротивление изоляции цепей, напряжением до 60

автоматики, телемеханики,

В, питающихся от отдельного источника,

возбуждения машин постоянного тока

измеряются мегаомметром на напряжение 500 В и

на напряжение 500 - 1000 В,

должно быть не менее 0,5 МОм

присоединенных к главным цепям

Цепи, содержащие устройства с

микроэлектронными элементами,

рассчитанные на напряжение, В:

до 60

Не менее 0,5

выше 60

Не менее 0,5

Силовые кабельные линии

2500

Не менее 0,5

Измерение производится в течение 1 мин.

Обмотки статора синхронных

1000

Не менее 1

При температуре 10 - 30 С

электродвигателей

Вторичные обмотки измерительных

1000

Не менее 1

Измерения

производятся

вместе

трансформаторов

присоединенными к ним цепями

Анализ требований ПУЭ (приемо-сдаточные испытания) и ПТЭПП (эксплуатационные испытания) к минимально допустимым значениям сопротивления изоляции показывает наличие серьезных противоречий, а именно: для распределительных устройств при приемо-сдаточных испытаниях достаточное сопротивление изоляции 0,5 МОм, а при межремонтных профилактических - 1 МОм.

Данное обстоятельство может привести к тому, что при приемо-сдаточных испытаниях РУ может быть признано годным, а при первых межремонтных - забракованным (при 0,5 < R из < 1 МОм).

5.3. Порядок проведения измерений

При измерении сопротивления изоляции следует учитывать, что для присоединения мегаомметра к испытываемому объекту необходимо пользоваться гибкими проводами с изолирующими рукоятками на концах и ограничительными кольцами перед контактными щупами. Длина соединительных проводов должна быть минимальной исходя из условий проведения измерений, а сопротивление их изоляции не менее 10 МОм.

5.3.1 Измерения сопротивления изоляции мегаомметром Е6-32 проводятся в следующей последовательности:

1. Проверить отсутствие напряжения на испытываемом объекте;

2. Очистить изоляцию от пыли и грязи вблизи присоединения мегаомметра к испытываемому объекту;

3. Подключение кабелей к мегаомметру Е6-32 для проведения измерения

сопротивления изоляции на примере кабеля показано на рисунке 1.

Рисунок 1.

Для измерения сопротивлений более 10 ГОм с заданной точностью необходимо подключить экранированный измерительный кабель РЛПА.685551.001, как показано на рисунке.

Самая главная причина повышенного внимания к кабельно-проводниковой продукции такова: мы полностью зависим от электричества. Всё в нашей жизни – от детских игрушек и компьютеров, до работы заводов и фабрик – продолжает свою деятельность благодаря электричеству. А так как для передачи электроэнергии другого способа, кроме проводов, нет, то их стабильная и безотказная работа – задача первостепенной важности.
И если сравнить требования непосредственно к токопроводящим жилам с требованиями к изоляции, то последних окажется на порядок больше. По большому счёту, у проводника задач всего две: передать электроэнергию, и по пути не «растерять» её. У кабельной изоляции задач, конечно больше.

Во-первых, изоляция защищает жилы от механических повреждений , а так же от воздействия окружающей среды, ведь кабели прокладываются и в воде, и в земле и штробах стен. Безусловно, для таких особенных способов прокладки правилами устанавливаются дополнительные требования защиты кабелей и проводов от повреждений (лотки, трубы и прочее). Но и сам кабель и его изоляция должны быть устойчивыми к воздействию извне. Поэтому на рынке существуют кабели с многослойной и разнокомпонентной изоляцией, а также бронированные провода.

Во-вторых, изоляция должна являться непреодолимым барьером для проводников внутри самого кабеля . Ни для кого не секрет, что замыкание токопроводящих жил не приведёт ни к чему хорошему. А так как большинство кабелей несёт в себе и фазную и нулевую нагрузку, изоляция между ними должна быть особенно надёжной.

В третьих, как мы уже обозначили выше, изоляция защищает человека от повреждения электрическим током. Конечно же, это не значит, что при работе с изолированными кабелями электрики могут работать голыми руками. Нет! В этом случае кабельная изоляция рассчитана в первую очередь на упразднение случайных соприкосновений. От таких случайностей кабель защищается изоляцией, а человек – резиновыми перчатками и ковриком, «правильным» инструментом, защитными очками, и так далее, в соответствии с Межотраслевыми Правилами по технике безопасности.

Ещё одно немаловажно требование, касающееся долговечности работы кабеля. Это, безусловно, тоже задача изоляции. В первую очередь здесь подразумевается сохранение герметичности токоведущих жил . Попадание на них, например, воды очень быстро вызовет коррозию и негативным образом скажется на работе кабеля в целом. Для обеспечения этого требования используют промасленную бумажную изоляцию.

Продолжать этот список можно ещё достаточно долго. Существует невероятное множество кабелей, проводов, шнуров с самой различной изоляцией, разработанной под определённые требования. Отметим лишь, что какой бы ни была изоляция, она должна оставаться в меру гибкой, чтобы не сломаться во время производства, упаковки, транспортировки и монтажа.

Периодичность проведения замеров сопротивления изоляции

Ещё одна причина, по которой замер сопротивления изоляции кабелей настолько популярен, – это необходимость постоянного его проведения. Дело в том, что кабельная изоляция со временем теряет свои свойства. Несмотря на то, что её изготавливают из материалов, которые способны прослужить надёжной защитой в течение многих лет, время от времени проверять её состояние всё же необходимо. Вдобавок к этому, в процессе эксплуатации токовая нагрузка на кабель может увеличиваться, потому что количество энергопотребителей растёт каждый день.

Если рассмотреть в качестве примера жилые дома, которые были построены несколько десятилетий назад, то нетрудно догадаться, что сегодня количество электроприборов в квартирах несравнимо больше. А на момент строительства электрическая проводка внутри здания, равно как и сечение вводного кабеля, не были рассчитаны на такие нагрузки. Результат – повышенная нагрузка на кабель, нагрев кабеля, преждевременный износ и неизбежная его замена.

Чтобы избежать этих неприятностей, за состоянием кабелей и кабельной изоляции необходимо постоянно следить. По сути, это техническое обслуживание электропроводки, в которое входит проведение комплекса измерений пропускной способности кабеля и замер сопротивления изоляции.

  1. Производство .
    До того, как кабель обретёт своё место (будет проложен и смонтирован), его уже неоднократно проверяли и измеряли его технические свойства.
    Как правило, современные линии для производства кабельно-проводниковой продукции – это линии полного цикла. То есть, на входе происходит загрузка всех необходимых материалов, а на выходе – бухта кабеля или готовый к транспортировке барабан. Но прежде чем отправить готовую продукцию на склад или продать её, необходимо убедиться, что кабель соответствует всем требованиям. Для этого электротехническая лаборатория проводит комплекс измерений, среди которых в обязательном порядке замер сопротивления изоляции. Если барабан с кабелем или бухта не проходит тесты, значит, где-то был нарушен технологический процесс, и произведённый кабель не подлежит эксплуатации.
  2. Монтаж .
    Во время производства электромонтажных работ кабельную изоляцию так же необходимо проверить на их целостность и готовность к прокладке. Испытание изоляции производится в обязательном порядке, при чём, как до монтажа кабеля, так и после него. Нужно отметить, что проверка состояния кабельной изоляции должна проводиться до и после каждой операции с кабелем.
    Доставили барабан с кабелем на строительную площадку – произвели замер.
    Если кабель на барабане необходимо прогреть, то после него нужно произвести замер.
    Размотали кабель перед прокладкой – произвели замер.
    Проложили кабель от источника до потребителя – произвели замер.
    Только после проведения замеров сопротивления изоляции на всех этапах монтажа с положительным результатом может быть дано разрешение на подачу электроэнергии.
  3. Эксплуатация .
    Как мы уже писали выше, в период эксплуатации любой энергосистемы, следить за состоянием кабелей – первоочередная задача. Кабельная изоляция со временем рассыхается и теряет свои изолирующие свойства. Помимо этого, от чрезмерных нагрузок кабели могут нагреваться, что так же негативным образом сказывается на изоляции. В зданиях новой постройки на кабель может оказать отрицательно влияние такое явление как усадка. Да и вообще, кабели очень часто подвергаются воздействию, которое не лучшим образом сказывается на их работоспособности: почва, вода, морской воздух, грызуны, в конце концов! Поэтому очень важно постоянно следить за изоляцией кабельных трасс. Для кабельных линий общего назначения такие проверки должны проводиться не реже одного раза в три года, а для кабелей, находящихся в агрессивной или опасной среде – не реже одного раза в год.

Оборудование для проверки изоляции кабелей

Наверное, все в школе, на уроках физики, видели и пробовали работать такими приборами амперметр, вольтметр и омметр. Первый – для измерения силы тока, второй – для измерения напряжения, а третий измерял сопротивление проводника.
В случае с изоляцией тоже используют омметр. Но так как изоляция должна выдерживать повышенную токовую нагрузку, то её сопротивление измеряется в мегаоммах. Отсюда и название измерительного прибора – мегаомметр (или мегометр).
Сегодня на рынке существует три разновидности этого прибора.

  1. Мегаомметры, произведённые до 2000-х годов (аналоговые). Они представляют собой коробку, размером, приблизительно, с двухлитровый тетрапак, с подключаемыми клеммниками и крутящейся ручкой. Основная составляющая такого прибора – это динамо-машина, После подключения прибора к кабелям, с помощью кручения ручки, динамо-машина нагнетает необходимый уровень избыточного напряжения при постоянном токе в проводниках.
    Несмотря на то, что такие приборы имеют достаточно большую массу и габариты, они до сих пор пользуются популярностью и стоят на вооружении многих электротехнических лабораторий.
  2. Современные мегаомметры (цифровые) – измерительные приборы, в которых устранены самые главные недостатки предшественников: излишняя масса и большие габариты. По своей массе и размерам их можно сравнить с обычным блокнотом, формата А5. Очень часто такие приборы оснащают прорезиненным корпусом, поэтому их очень удобно держать в руке. Более того, никаких «ручек-крутилок» на современных мегаомметрах нет, и процесс измерения сопротивления изоляции кабелей максимально автоматизирован. Источником тока в них являются гальванические элементы или аккумуляторные батареи. Более того, так как прибор цифровой, его оснащают многими полезными функциями: автоматическое выставление нужных параметров тока для различных категорий энергопотребителей, возможностью запоминания и сохранения результатов измерений и прочими.
  3. В последние годы очень популярными стали измерительные комплексы – мультиметры. То есть, в одном корпусе заключены несколько приборов, например, в паре с мегаомметром может работать и вольтметр. Для техников, постоянно производящих замеры, такое техническое решение является очень важным. При этом, ни размеры ни масса такого прибора не мешают носить его в кармане спецодежды.

Ну и конечно, нельзя не упомянуть, что любой измерительный прибор должен проходит ежегодную поверку. Такую проверку осуществляют специализированные метрологические и испытательные центры. Результатом поверки является заключение о состоянии измерительного прибора и специальная голографическая наклейка на корпусе, с указанием даты последней поверки.
Для проведения только лишь одного измерения, наряду с мегаомметром в электротехнической лаборатории используется ещё ряд вспомогательных приборов и приспособлений. Все они должны так же проходить поверку и иметь сопутствующую разрешительную документацию.

Суть, нормы и технология измерения сопротивления изоляции

Итак, мы добрались до самого главного – технологической части производства работ. И прежде, чем приступить к описанию тонкостей замеров сопротивления изоляции различных кабелей, необходимо объяснить физическую суть этого процесса.
На тех же уроках физики в школе нам объясняли, что в природе существуют материалы, которые по своим физическим свойствам могут быть либо проводниками электричества, либо полупроводниками, либо диэлектриками. Первые проводят электрический ток, при чём, делают это очень хорошо и с минимальными потерями. Вторые тоже проводят электрический ток, но делают это менее охотно. Последний тип материалов не проводит электричество вовсе. Эти свойства материалам придаёт такой параметр, как сопротивление. Зависимость токопроводящей способности материалов и их сопротивления обратно пропорциональны. То есть, чем меньше сопротивление у материала, тем лучше он проводит электричество, и наоборот.

Теперь вернёмся к нашим баранам, а точнее – к кабельной изоляции. Понятно, что жилы кабеля изготавливают из проводников, которые способны передавать электрический ток очень хорошо, с минимальными потерями даже на большие расстояния. Так же понятно, что изоляцию токопроводящих жил (и кабеля в целом) делают из диэлектрических материалов. Таким образом, изолированные жилы кабеля никогда не пересекутся, а, следовательно, не будет утечки электроэнергии и короткого замыкания. Вроде, всё логично и понятно.
Но, если жилы кабелей полностью изолированы друг от друга и никак не взаимодействуют между собой, то каким образом и за счёт чего производится измерение сопротивления изоляции? Какой параметр измеряет мегаомметр, если при измерениях все жилы кабеля разведены и никак не соприкасаются друг с другом? Так и напряжение, вырабатываемые мегаомметром, постоянные, следовательно, никаких наводок друг на друга кабели не испытывают.
Чтобы ответить на этот вопрос нужно помнить, что любая диэлектрическая основа изоляции со временем теряет свои свойства.

И процесс этот ускоряется из-за того, что изоляционный материал находится в постоянном контакте с металлической основой кабеля, находящейся под напряжением. Помимо этого, износ оболочки происходит по многим причинам. Например, резиновая изоляция больше других подвержена высыханию, и, как следствие, она не просто становится более жёсткой и хрупкой, она становится тонкой. Пластиковая изоляция тоже не вечна и со временем приходит в негодность. А если кабель находится в агрессивной или опасной среде, то его защитный ресурс может закончиться спустя всего несколько лет.

И что же происходит с электрическим током, который пропускают по жилам с плохим защитным слоем? Изоляция начинает его пропускать, и токоведущие жилы кабеля начинают между собой взаимодействовать. Конечно, в таких малых дозах это взаимодействие невозможно увидеть человеческим глазом, но мегаомметр эти изменения, безусловно, улавливает. Если сказать проще, то изоляционный слой со временем переходит из состояния диэлектрика в полупроводник. И до тех пор, пока этот переход остаётся в пределах допустимых значений, кабель допускается эксплуатировать.

Помимо этого, утечка электрического тока может проходить через микротрещины кабельной изоляции, и тоже до того момента, пока эта утечка остаётся в допустимых пределах. А если изоляция не герметична, то внутрь кабеля могут попадать влага и пыль, делая процесс износа изоляции более стремительным и неизбежным.

Когда кабель абсолютно новый, то результат замера сопротивления изоляции будет стремиться к бесконечности, ведь утечки тока нет, и токопроводящие жилы кабеля никак между собой не взаимодействуют. Но по мере «старения» изоляции, результаты замеров будут всё хуже и хуже. Когда кабель совсем старый, то во время замера может произойти даже короткое замыкание. Поэтому опытные техники никогда не подают на испытуемый кабель полную нагрузку, а делают это постепенно, как написано в МЭК 364-6-61.

В целом, говоря о нормативных документах в области электроизмерений, нужно отметить, что помимо внушительного списка различных правил и регламентов проведения замеров, у каждой электротехнической лаборатории должны быть методики и инструкции собственной разработки, предназначенные для техников и инженеров КИПиА, непосредственно производящих замеры. Эти документы разрабатываются на этапе образования лаборатории, утверждаются в Ростехнадзоре, и служат исключительно для внутреннего пользования в каждой электротехнической лаборатории. Мы разберём основные принципы и этапы проведения замеров изоляции кабелей.

Подготовительные работы

Любая работа в сфере строительства начинается с изучения эксплуатационной документации и объекта в целом. Техники должны тщательно изучить однолинейные схемы расключения шкафов и поэтажные планы разводки кабелей. Более того, так как величина сопротивления диэлектрической части кабеля не является постоянной, и зависит от нескольких факторов (например, температура окружающей среды, сроки эксплуатации кабелей и т.п.), специалистам необходимо так же детально изучить объект испытаний. Всё это необходимо для боле точных конечных результатов проверки.

Любые испытания кабельной продукции связаны с подачей на проводники электроэнергии. В связи с этим, нужно защитить от поражения людей и электроприборы. Первым делом, объект полностью обесточивается. Далее необходимо отсоединить автоматы, УЗО, защитные вставки и прочие устройства.
Процесс защиты энергопотребителей (лампы, электрооборудованияие и т.п.) заключается в отключении их от сети. Работа достаточно простая, но ёмкая по времени и трудозатратам. После отсоединения проводников от энергопотребителей следует завершить процесс заземлением всех кабелей, которые планируется испытывать. Это следует делать в обязательном порядке, так как кабели могут сохранять остаточный электрический заряд.
Защиту от поражения людей осуществляют путём огораживания мест проведения испытаний и установкой предупреждающих знаков и табличек. При необходимости, перед местом выполнения измерительных работ можно выставить охрану.

Замер сопротивления изоляции двухжильных кабелей

Самым простым, понятным и наглядным примером проведения замера сопротивления изоляции является кабель, состоящий из двух жил – пары. Щупы мегаомметра закрепляют на каждой жиле и подают напряжение. Уровень сопротивления изоляции для всех кабелей, проводов и шнуров, рассчитанных на рабочую нагрузку до 220В, должен быть не менее 0,5 МОм. Если кабель состоит из нескольких пар (например, магистральный телефонный кабель), то замеры нужно проводить как между жилами каждой пары, так и между жилами разных пар.

Замер сопротивления изоляции трёхжильных кабелей

В данном случае речь идёт о силовых и некоторых контрольных кабелях. Замер сопротивления изоляции здесь производится по кругу, парами. Сначала между жилами «фаза» – «ноль», затем «ноль» – «земля», и, наконец, «земля» – «фаза». Так как все жилы должны иметь одинаковую изоляцию, то и показания мегаомметра должны быть одинаковыми. Изоляция силовых трёхжильных кабелей, рассчитанных на рабочее напряжение до 1000В, должна иметь сопротивление не менее 0,5 МОм. А если замер производится на контрольном кабеле, то его сопротивление изоляции не должно быть меньше 1 МОм.

Замер сопротивления изоляции многожильных кабелей

Замер сопротивления изоляции у многожильных кабелей имеет ту же структуру что и у парных. Например, чтобы измерить сопротивление изоляции у четырёхжильного кабеля (три «фазы» и «ноль») необходимо сделать шесть замеров. Пятижильный кабель – десять замеров.
Силовые кабели, рассчитанные на номинальную рабочую нагрузку свыше 1000В, должны иметь изоляцию, сопротивление которой не может быть менее 10 МОм.

В заключение этого раздела необходимо так же обратить внимание на испытательное напряжение , которое, безусловно, отличается от номинального.

  1. Если кабель рассчитан на повседневную работу под напряжениемдо 100 В , то максимальное напряжение, при котором производится замер сопротивления изоляции, 100 В;
    2. Если кабель работает под напряжениемот 100 до 500 В , то замер сопротивления изоляции производится под напряжением от 250 до 1000 В;
    3. Кабельные линии, рассчитанные на номинальную нагрузку от 500 до 1000 В необходимо испытывать напряжением от 500 до 1000 В;
    4. Ну а если в номинальное рабочее напряжение кабеля превышает 1000 В , то замер сопротивления производится нагрузкой 2500 В.

Итоги проведения измерений: технические отчёты, протоколы, акты

Чтобы измерения не остались в памяти людей, которые их проводили или в памяти цифрового мегаомметра, их результаты заносят в специальный документ – протокол . Сам по себе протокол может состоять как из одного вида испытаний, так и являться сборным документом после комплекса измерений. Изначально форма протокола разрабатывается каждой лабораторией самостоятельно и утверждается в органах Ростехнадзора вместе с методиками и инструкциями.

Протоколы объединяются в технический отчёт , помещаются в папку, снабжаются титульным листом и перечнем замеров, которые были проведены на объекте. Также электротехнические лаборатории комплектуют папку с техническим отчётом прочими необходимыми документами: Свидетельством ЭТЛ, паспортами и свидетельствами о поверке приборов, документами на специалистов, проводивших замеры, и т.п. Документация составляется таким образом, чтобы у надзорных органов при проверке не возникло дополнительных вопросов о проделанной на объекте работе.

Если замеры проводились в рамках строительства или реконструкции объекта, то технический отчёт в обязательном порядке включается в состав исполнительной документации. А если испытания кабельной системы были плановыми, то технический отчёт передаётся заказчику.

Сами протоколы представляют собой сводную таблицу, в которой отражаются абсолютно все результаты испытаний замеров сопротивления изоляции каждого проверенного кабеля. Это наиболее удобная и компактная форма записи большого количества информации. В шапке каждого протокола указывается наименование замера, дата проведения, а так же наименование компании и присвоенный номер электротехнической лаборатории. На последней странице каждого протокола, помимо подписей ответственных за проведение замера лиц, указывается наименование измерительного прибора и дата проведения последней поверки.

Передвижная электротехническая лаборатория: особенности испытания кабелей

Любая передвижная электротехническая лаборатория, конечно же, может проводить замер сопротивления изоляции кабелей. Более того, если на борту передвижной ЭТЛ будет генератор электрического тока, то лаборатория сможет проверять сопротивление изоляции даже у кабелей, рассчитанных на очень высокое рабочее напряжение.
Особенность проведения таких работ заключается в том, что передвижная лаборатория работает за пределами зданий, следовательно, имеет дела с магистральными кабелями, которые могут тянуться от одной подстанции до другой на расстояние в несколько десятков километров. Следовательно, чтобы провести даже подготовительные работы, нужно потратить какое-то время.

Расстояние – это самая главная особенность проведения испытаний магистральных кабелей. Например, если результаты испытаний внутри здания не соответствуют нормативным показателям, кабельная трасса дробится на мелкие участки по кабельным соединениям, и каждый участок проверяется индивидуально. Таким образом, можно выявить участок кабеля, на котором изоляция не соответствует значениям установленных стандартов, и заменить его, при этом материальные и трудовые затраты будут минимальными. Если же подобный дефект изоляции выявится на магистральном кабеле, то для его устранение потребуется в разы больше затрат. Но это уже тема для следующей статьи.

Контроль сопротивления изоляции

Итак, нужно подвести итог всему вышесказанному. Прежде всего, стоит оговориться, что методика замера сопротивления изоляции не так проста и однозначна, как было описано выше. Все тонкости данной работы, безусловно, очень хорошо известны профессионалам, ежедневно подвергая изоляцию кабельных линий испытаниям. И доверять такую ответственную работу стоит только истинным гуру в этой области, которые не оставят без внимания ни одной детали.

Нужно помнить, что надёжная и стабильная работа любой энергосистемы напрямую зависит от технического состояния кабельной системы, входящей в её состав. Следовательно, чтобы работали заводы, чтобы улицы ночью освещались фонарями, чтобы в Новогоднюю ночь дети радовались огням на новогодних ёлках, чтобы в каждом доме горел свет и (что ещё важнее!!!) работал интернет, нужно содержать все составляющие этой огромной системы в надлежащем состоянии.

Цель работы:

Изучить методы измерения сопротивления изоляции электроустановок.

Задание:

    Ознакомиться с теорией по сопротивлению изоляции электросети.

    Изучить методы измерения сопротивления изоляции электроустановок.

    Провести экспериментальное определение сопротивления изоляции проводов, предложенных преподавателем, с помощью:

    1. Мегаомметра М 4100.

      Тераомметра Е6-13А.

      Мультиметра М-830В.

КРАТКАЯ ТЕОРИЯ

При снижении сопротивления изоляции в месте повреждения (загрязнение, увлажнение и т. п.) увеличивается ток, протекающий под действием рабочего напряжения сети; соответственно повышается температура нагреваэтого места. Повышение температуры нагрева изоляционного материала снижает его сопротивление, что приводит к соответствующему увеличению тока. Последнее вызывает новое повышение температуры и соответствующее дополнительное снижение сопротивления изоляции. Процесс нарастания электрического тока продолжается до тех пор, пока не установится равновесие между тепловыделением и теплоотводом (при какой-тоустановившейся температуре перегрева). В случае, когда условия охлаждения не соответствуют интенсивности тепловыделения в месте повреждения, наступает лавинообразное нарастание тока, приводящее к тепловому разрушению материала и дуговому замыканию. Поэтому при снижении сопротивления изоляции необходимо принимать меры к устранению неисправности.

Сопротивление изоляции сети

Сеть состоит из комплекса гальванически связанных электротехнических изделий - источника электроэнергии, распределительных щитов, приемников электроэнергии, линий связи и пр. Каждое изделие имеет определенное значение сопротивления изоляции.

Если все токоведущие части данной фазы находятся под электрическим потенциалом ф ф, а земля имеет электрический потенциал ф 0 , то сопротивления изоляции R 0 этой фазы у всех элементов сети оказываются под одной и той же разностью потенциалов. Отсюда следует, что сопротивленияR 0 всех элементов сети включены между собой параллельно. Обычноизмеряют эквивалентное сопротивление изоляции не отдельных фаз, а сети в целом (или ее отдельных участков). Тогда

где R ni - сопротивление изоляции отдельного электротехнического изделия, n - количество изделий в сети.

То есть эквивалентное сопротивление изоляции сети относительно земли зависит от количества входящих в эту сеть электротехнических изделий и значений их сопротивления изоляции. Чем разветвленнее сеть, чембольше в ней элементов, тем ниже уровень ее сопротивления изоляции. При этом даже и случаи исправной изоляции у всех элементов значениеэквивалентного сопротивления изоляции сети может быть весьма низким. В разветвленной сети на фоне низкого значения эквивалентного сопротивления изоляции незаметно аварийное снижение сопротивления изоляции одного из элементов. Тем самым возрастает пожарная опасность разветвленных сетей.

Емкость относительно земли

Токоведущие части и корпус электротехнического изделия (либо земля) образуют своеобразный конденсатор, обладающий определенной емкостью. Действительно, здесь мы имеем две токопроводящие среды, изолированные друг от друга и находящиеся под разными потенциалами φ ф и φ 0 .

Так, на рисунке 3.1, а видно, что каждый элементарный участок провода длиной ΔL обладает емкостьюΔ С относительно земли. Эквивалентная емкость провода равна сумме этих частичных емкостей. Емкость жилы кабеля длиной 1 км относительно внешней металлической оплетки колеблется в диапазоне 0,1-1,0 мкФ в зависимости от ее сечения и конструкции кабеля. Каждый токоведущий элемент - обмотки электрическихмашин, трансформаторов и реле, печатный монтаж и пр. - имеет определенную емкость.

Емкость относительно земли - элемент, распределенный по длине линии. Однако при анализе условий электробезопасности распределенную емкость заменяют сосредоточенной эквивалентной и применяют аппарат теории цепей с сосредоточенными параметрами. Это справедливо, так как длина электромагнитной волны промышленной частоты 50 Гц равна 6000 км (λ = c/f), то есть она существенно больше геометрических размеров электрической сети любого промышленного объекта. Емкость как распределенный элемент учитывается при анализе нестационарных высокочастотных процессов типа импульсных перенапряжений в сети при внезапных замыканиях на землю и при расчете процессов в протяженных линиях передачи электроэнергии.

φ Ф = U ф

φ 0 = 0

Рисунок 3.1 - Емкость токоведущих частей относительно земли: распределенная (а) и эквивалентная (б).

Другим источником емкости (основным по количественному значению) являются фильтры защиты аппаратуры автоматики и радиоэлектронной аппаратуры от помех. Эти фильтры устанавливают у источника помехи и в цепях питания радиоэлектронной аппаратуры.

В любой сети постоянною токи или промышленной частоты при каждом разрыве электрической цепи возникают высокочастотные электромагнитные колебания (электромагнитные помехи), которые как излучаются во внешнее пространство, так и проходят по сети. Генераторами подобных помех являются коммутационные аппараты (контакторы, реле), коллекторные электрические машины и тому подобные элементы. Другим источником помех является нелинейные элементы сети, искажающие форму кривой напряжения и генерирующие высокочастотные составляющие (например, полупроводниковые выпрямители).

Обычно уровень электромагнитных помех снижают путем применения емкостных помехоподавляющих фильтров.

Например, конденсаторы C 1 , включаются между каждой щеткой коллекторной электрической машины и корпусом. При этом для высокочастотной электромагнитной помехи внутри корпуса машины создается контур«щетка Щ1 - конденсатор C 1 - корпус - конденсатор C 1 - щетка Щ2», имеющий бесконечно низкое сопротивление

Х с =1/2 πnfC l ->0

где n- кратность частоты помехи по отношению к основной гармонике 50 Гц. В результате помеха не выходит за пределы корпуса машины. Емкость каждого фильтра в зависимости от конкретных обстоятельств лежит в диапазоне 0,049-10 мкФ и более.

Емкость ухудшает изоляционные параметры сети, снижая эквивалентное сопротивление токоведущих частей относительно земли при исправной электрической изоляции. Например, если имеем эксплуатационный уровень эквивалентного сопротивления изоляции сети 600 кОм, то при значении емкости 1 мкФ он снижается в 200 раз - до 3 кОм; еслиемкость составляет 100 мкФ, то он падает в 20000 раз - до 30 Ом.

Таким образом, анализ условий электробезопасности как на стадии разработки проекта электроустановки, так и при ее эксплуатации должен выполняться с учетом параметров цепей связи токоведущих элементов с землей. В качестве примера на рис. 3.1, б приведена эквивалентная схема трехфазной сети с изолированной нейтралью.

Как правильно измерить сопротивление изоляции электроустановок

Сопротивления изоляции распределены по сети. Обычно оперируют значениями эквивалентных величин. Вследствие этого линии связи между токоведущими частями и корпусом, показанные в упомянутой статье на схемах замещения (рис. 3.2), и соответствующие им подключения элементов к фазам (полюсам) сети и земле в природе отсутствуют. Поэтому измерить значение сопротивления изоляции непосредственным подключением какого-либо прибора к схемным линиям связи не представляется возможным. По этой причине обычно используют косвенные методы измерений - активные (с применением вспомогательного источника напряжения) или пассивные (с использованием рабочего напряжения сети в качестве оперативного напряжения).

В сетях с заземленной нейтралью выполняют периодический контроль при снятом рабочем напряжении, а в сетях, изолированных от земли, согласно п. 1.6.12 « Правил устройства электроустановок» - автоматическийконтроль под рабочим напряжением.

Представление о значении сопротивления изоляции дает лишь сила тока в измерительной цепи в установившемся режиме, так как в первыемоменты после приложения измерительного напряжения, а также при каждом изменении структуры и состава сети (например, при подключении новых электроприемников) в измерительной цепи протекают токи переходных режимов, обусловленные перезарядом емкости полюсов сети относительно корпуса или зарядом емкости подключаемого участка сети. Крометого, на результат измерений оказывает влияние рабочее напряжение электроустановки.

Правильный результат может быть получен лишь при соответ ствии принятого метода измерений параметрам контролируемой сети. Без соблюдения этого условия в одной и той же сети при измерении различными средствами могут быть получены данные, противоречащие одни другим.

Измерения при снятом рабочем напряжении

При снятом рабочем напряжении применяют метод наложения постоянного напряжения. Измерительный прибор - переносной либо щитовой мегаомметр И- содержит источник постоянного напряжения Е и миллиамперметр А (рисунок 3.2).

Рисунок 3.2 - Измерение при снятом рабочем напряжении

Один полюс прибора (обычно положительный) подключается к токоведущей части (например, к клемме 1), а второй полюс - к корпусу проверяемого электротехнического изделия.

В установившемся режиме после заряда емкостей C 1 и С 2 относительно корпуса ток I ИЗМ, протекающий под действием источника Е, на полюсе 1 разветвляется: его часть I" изм протекает через эквивалентное сопротивление изоляции R 1 полюса 1, а другая часть I"" изм - через сопротивление нагрузки R н и эквивалентное сопротивление изоляции R 2 полюса 2. Далее ток протекает по корпусу и суммируется в цепи миллиамперметра А.

Силу тока I ИЗМ определяет выражение:

I изм = E /{ R вн + R ) (3.2)

где R BH - внутреннее сопротивление мегаомметра (миллиамперметра, источника измерительного напряжения и добавочного сопротивления R д), R -эквивалентное сопротивление изоляции. Строго говоря, в последнем следовало бы учесть сопротивление R H , но обычно R H «R2 поэтому его влиянием допустимо пренебрегать (в тех случаях, когда внутреннее сопротивление контролируемого изделия соизмеримо с величиной сопротивления изоляции, такое допущение может приводить к ошибочным результатам, завышенным против фактических).

При R BH = const и Е = const сила тока в измерительной цепи зависит только от величиныR, поэтому миллиамперметр градуируют непосредственно в единицах сопротивления.

На практике обычно применяют переносные мегаомметры с питанием от сети переменного тока (типа MI27) или с автономным источником (типа М4100). В качестве последнего используют индукторный генератор с ручным приводом (скорость вращения рукоятки около 2 об/с). Чтобы уменьшить погрешность измерений из-за непостоянства скорости вращения рукоятки, в таких мегаомметрах в качестве измерительного прибора используют не миллиамперметр, а логометр, одна рамка которого подключенанепосредственно к источнику напряжения, а вторая, жестко связанная с ней, включена в измерительную цепь.

Для повышения достоверности измерений измерительное напряжение выбирают близким к рабочему напряжению контролируемой цепи. Для электрооборудования напряжением от 100 В до 400 В применяют мегаомметры напряжением 500 В. Безопасность измерений при этом достигается за счет ограничения силы тока в измерительной цепи до величины 1 мАдобавочным сопротивлением R = 0,5 МОм.

Измерения в сетях постоянного тока

Норвежская фирма Autronicaсоздала автоматизированную систему контроля сопротивления изоляцииSystemAJ-1 с генератором оперативного напряжения частотой 5 Гц. ФирмаMerlinGerin(Франция) выпускаетприборы Vigilohm System XM-200 с оперативным источником частотой 2,5 Гц.

В ряде случаев вместо источника напряжения непромышленной частоты используют вспомогательный источник постоянного напряжения переменной полярности. Так, фирмаBender(Германия), выпускает приборIRDH 265-4.

Метод уравновешенного моста

На этом методе, как правило, основана работа отечественных щитовых мегаомметров в сетях постоянного тока. Схема измерений этим методом приведена на рисунке 3.3, где использованы следующие обозначения:А - миллиамперметр; R д - добавочное сопротивление; П - переключатель; Е - источник измерительного напряжения (до 150 В); R п - потенциометр.

Плечами моста являются сопротивления изоляции R 1 и R 2 и сопротивления r 1 и г 2 плеч потенциометра R п. Измерительный прибор и ограничительное сопротивление R д включены в диагональ моста.

Рисунок 3.3 - Измерение сопротивления изоляции сети постоянного токаметодом уравновешенного моста

Сила тока I изм в диагонали моста определяется выражением:

(3.3)

где R- эквивалентное сопротивление изоляции сети.

Измерение производится в два этапа. На первом этапе переключатель П устанавливают в положение 1 и перемещением движка потенциометра балансируют мост - добиваются отсутствия тока в диагонали моста. На втором этапе переключатель устанавливают в положение 2, подключая в диагональ моста источник измерительного напряжения Е. После окончания процессов перезаряда емкостей снимают показание миллиамперметра.

В сбалансированном мосте составляющая тока, определяемая вторым слагаемым, отсутствует. Поэтому при Е = const,R д =constи при условииr 1 r 2 /R n «R сила тока I ИЗМ однозначно определяется сопротивлением изоляции R (приборы типа MI54, М1508, М1608, М1428, М1628).

Обычно при работе с сетями постоянного тока применяют методы измерений, основанные на использовании рабочего напряжения сети в качествеоперативного напряжения. Рассмотрим один из них.

Метод трех отсчетов вольтметра

Этот метод заключается в последовательном измерении вольтметром с известным сопротивлением r трех напряжений: U - рабочего; U 1 – между положительным полюсом сети и землей; U 2 - между отрицательным полюсом и землей. Расчет искомой величины сопротивления изоляции сетипроизводится по формуле:

(3.4)

Рассмотрим физические основания этого метода.

Рисунок 3.4 - Измерение сопротивления изоляции

сети постоянного тока вольтметрами

а) - по методу двух вольтметров; б) и в) - по методу трех отсчетов вольтметра

На рисунке 3.4(а) показана эквивалентная схема сети постоянного тока с сопротивлениями изоляции полюсов R1, R2 и рабочим напряжением U.

Напряжения между полюсами сети и корпусом U" и U" пропорциональны соответствующим сопротивлениям изоляции, то есть всегда выполняются следующие соотношения:

(3.5)

Если для измерения этих напряжений между полюсами сети и корпусом включить вольтметры V1 и V2 c равными внутренними сопротивлениями r, то получим:

(3.6)

При r » R выражение (3.6) будет совпадать с предыдущим.

Такой способ контроля (с использованием двух вольтметров) ранее применялся для индикации однополюсных снижений сопротивления изоляции и однополюсных замыканий на землю. Вольтметр, соответствующий полюсу с меньшим сопротивлением изоляции, имеет меньшее показание (зачастую вместо вольтметров включали две лампы накаливания).

Пользуясь результатами измерения напряжений U` иU", определитьвеличины сопротивлений R 1 и R 2 , соответственно и значение эквивалентного сопротивления изоляции сетиR, не представляется возможным, так как система уравнений (3.5) неполная: эквивалентная схема соcтоит из трех контуров, в то время как сама система содержит только два уравнения. Чтобы ее все-таки можно было разрешить, в сеть вносят нормированные искажения.

При включении вольтметра V по схеме рисунка 3.4(б) меняется эквивалентное сопротивление между положительным полюсом сети и землей (за счет шунтирования сопротивления изоляцииR i внутренним сопротивлением вольтметра r). Оно становится равным:

(3.6)

Так как при этом сопротивление между отрицательным полюсом сети и корпусом не изменится, то уменьшается напряжение между положительным полюсом и землей: U 1 U"). При измерении по схеме рис. 3.4,в аналогично получаем:U 2

Следует еще раз подчеркнуть, что оно образуется за счет намеренного поочередного уменьшения сопротивлений между полюсами сети и землей путем шунтирования сопротивлений изоляции R 1 иR 2 известным сопротивлениемr.

Теперь система уравнений, составленных для напряжений U 1 иU 2 , оказывается разрешимой, так как она содержит известные величиныU,U 1 ,U 2 ,rи две неизвестные величины:R 1 иR 2 . Решая систему относительно последних, получаем выражение (3.4) для эквивалентного сопротивления изоляции сети.

Соотношение величин напряжений UиU 1 +U 2 , определяющее точность измерений при данном сопротивлении изоляции сети, зависит от величины сопротивления вольтметраr. Еслиr>>R(например, при измерении ламповым, цифровым или электростатическим вольтметром), то при подключении вольтметра в сеть вносятся несущественные искажения, так как сопротивления между полюсами сети и землей практически не изменяются. Как следствие этого получаемU 1 +U 2 =U. Соответственно нулевыми будут результаты при расчетах по формуле (3.4).

Наибольшая точность измерений достигается при выполнении следующего соотношения: r= 0,8R, при которомU 1 +U 2 =0,44U. Обычно рекомендуется выбирать вольтметр с внутренним сопротивлением, приблизительно равным измеряемому сопротивлению изоляции.

Изложенное справедливо не только для силовых сетей, но и для низковольтных систем автоматики. В последних опасно выполнять контроль сопротивления изоляции с использованием щитовых мега-омметров, содержащих источник измерительного напряжения 100-150 В. Под действием этого источника при определенных условиях могут выйти из строя комплектующие систему полупроводниковые приборы и микросхемы.

Этот метод прост в выполнении и доступен, так как не требует применения специальной аппаратуры. Однако он имеет и ряд недостатков, связанных с необходимостью выполнения вычислений.

Опыт показывает, что целесообразна подмена расчетов по формуле (3.4) работой с соответствующими номограммами. В качестве примера нарис. 3.5 приведена номограмма, предназначенная для определения значения сопротивления изоляции сетей постоянного тока напряжением от 150 до 600 В.

Номограмма имеет три шкалы - рабочего напряжения U, суммы напряжений полюсов сети относительно корпуса U 1 +U 2 , и искомого значения сопротивления изоляцииR. Порядок работы с номограммой таков: к точкам шкалUиU 1 +U 2 , соответствующим полученным результатам измерений, прикладывается линейка; искомое значение считывается по шкалеR.

В практической деятельности не всегда имеется в наличии вольтметр с предусмотренным номограммой значением внутреннего сопротивления. Поэтому на рисунке 3.6 приведена номограмма, пригодная для работы сразличными типами вольтметров. Она состоит из двух параллельных шкал (U 1 + U 2 и R) и бинарного поля с координатами «напряжение сети - внутреннее сопротивление вольтметра». Работа с такой номограммой также несоставляет труда.

Рисунок 3.5 - Номограмма для определения сопротивления изоляции сетей постоянного тока напряжением от 150 В до 600 В при измерении вольтметром с внутренном сопротивлением 100 кОм

Рисунок 3.6 - Номограмма для определения сопротивления изоляции сетей постоянного тока напряжением от 150 В до 600 В при измерении вольтметром с внутренним сопротивлением от 50 до 200 кОм

Измерения в сетях переменного тока

Принцип действия большинства приборов, предназначенных для работы в сетях переменного тока, находящихся под рабочим напряжением, основан на использовании метода наложения постоянного измерительного напряжения (см. рисунок 3.6), аналогичного методу измерений при снятом напряжении. Так как под действием рабочего напряжения Uф в измерительной цепи может протекать, переменный ток, то для ее защиты применяют индуктивный или, как показано на схеме, емкостный фильтр (цепь R1-C1). Конденсатор С1 также защищает измерительную цепь от бросков тока IИЗМ в переходных режимах работы сети (при подключении электроприемников) (см. рисунок 3.7).

Рисунок 3.7 - Контроль изоляции сетей переменного тока методом наложения постоянного напряжения

Измерение сопротивления изоляции производят при нажатой кнопке К, когда измерительная цепь замыкается через миллиамперметр А, проградуированный в единицах сопротивления. При «свободном» состоянии кнопки (в режиме автоматического контроля) цепь замыкается через резистор Rд, являющийся входным элементом блока сигнализации БС. Падение напряжения на этом резисторе, так же как и сила тока в измерительной цепи, однозначно определяется значением эквивалентного сопротивления изоляции сети. При уменьшении сопротивления изоляции это напряжение возрастает; в случае снижения сопротивления доопределенного значения (установленной для данной сети уставки срабатывания сигнализации Uycт) на выходе БС появляется соответствующий сигнал (световой или звуковой).

На таком принципе работают устройства «Электрон-1» (автоматический контроль и измерение), ПКИ (автоматический контроль) и щитовые мегаомметры М1423, М1503, М1527. М1623. М1603.

В процессе настройки или эксплуатации электроустановки нередко возникает необходимость измерять сопротивление изоляции «прикладным» методом, не обращаясь к штатным средствам контроля. Л.П. Подольским в 1946 г. предложен достаточно простой способ двух отсчетов вольтметра применительно к трехфазным сетям (см. рисунок 3.8).

Рисунок 3.8 - Измерение сопротивления изоляции сети переменного тока методом двух отсчетов вольтметра

Согласно этому способу измеряют напряжение U1 между одной из фаз сети и землей. Затем между этой фазой и землей включают дополнительное сопротивление известной величины R1 и измеряют напряжение U2; вместо сопротивления R1 подключают сопротивление R2 и вновь измеряют напряжение между фазой и землей Uз.

Величина эквивалентного сопротивления изоляции сети определяется по

(3.7)

где q1 = (U1/U2)2 -1; q2 = (U, /U3) -1.

Измерения в сетях двойного рода тока

В современных сетях переменного тока обычно присутствуют полупроводниковые выпрямители, подключенные непосредственно к фазам сети (без применения трансформаторов). Это могут быть как маломощные элементы (например, для питания катушек контакторов в магнитных пускателях), так и силовые агрегаты (питание электроприводов постоянного тока). В подобных сетях величина эквивалентного сопротивления изоляции определяется пятью составляющими: сопротивлениями изоляции r а, r 0 , r с фаз цепей переменного тока и сопротивлениями изоляцииR 1 иR 2 полюсов цепи постоянного тока.

Рассмотренные выше методы измерений в сетях переменного тока называются непригодными для сетей двойного рода тока. Это объяснятся тем, что в сети двойного рода тока полюса цепи постоянного тока имеют определенные; постоянные напряжения относительно земли - в зависимости от значения сопротивления их изоляции.

Через полупроводниковый выпрямитель эти напряжения в определенной закономерности переносятся на цепи переменного тока и влияют на работу приборов контроля изоляции. Так, в простейшем случае, при использовании трехфазного неуправляемого выпрямителя, собранного по схеме Ларионова, среднее значение напряжения между фазами сети переменного тока и землей определяется выражением:

(3.8)

где U mФ - амплитуда фазного напряжения на входе выпрямительного моста; R1, R2 - сопротивления изоляции полюсов цепи постоянного тока; R-, R~ - эквивалентные сопротивления изоляции цепей постоянного и переменного тока соответственно.

Из этого выражения следует, что при равенстве величин R1 и R2 имеет место U = 0 и никаких искажений в работу приборов контроля не вносится.

Однако в общем виде R1≠R2, соответственно Ucp ≠ 0. В предельных случаях при однополюсном замыкании на корпус (R1<

В трехфазных сетях напряжением 380 В напряжение на выходе выпрямительного моста U=510 В. В приборах контроля изоляции измерительное напряжение Е существенно меньше (обычно оно равно 150 В), поэтому напряжение U оказывает существенное влияние на силу тока и напряжение в измерительной цепи, вносит дополнительную погрешность. Стрелка мегаомметра может занимать любое положение на рабочем участке шкалы, независимо от измеряемого значения сопротивления изоляции. Она может даже зашкаливать за отметки «о» и «∞», показывая лишенные физического смысла величины R<0 и R>∞ . В качестве примера на рисунке 3.9 приведены показания щитового мегаомметра типаM1503 в зависимости от значения сопротивления изоляции отрицательного полюса цепи постоянного тока при постоянном значении сопротивления изоляции положительного полюса (50 кОм) и эквивалентном сопротивлении изоляции цепей переменного тока 100 кОм (кривая 1). Кривая 2 соответствует фактическимзначениям эквивапентного сопротивления изоляции сети.

Из графиков видно, что кривые 1 и 2 совпадают только в одной точке, когда R1=R2= 50кОм. При низких значениях эквивалентного сопротивления изоляции (менее 10 кОм) стрелка прибора находится вблизи отметки «оо», и наоборот, при достаточно высоких сопротивлениях (более 25 кОм) прибор показывает R < 0.

ЛПО «Вибратор» выпускает мегаомметры типа M1428 и M1628, пригодные для работы в сетях двойного рода тока.

Рисунок 3.9 - Эквивалентное сопротивление изоляции сети двойного рода тока

В сетях переменного и двойного рода тока можно применять метод, разработанный на кафедре безопасности жизнедеятельности СПб ТЭТУ «ЛЭТИ». Существо метода заключается в следующем. К фазам сети переменного тока подключается трехфазный выпрямительный мост, собранный на полупроводниковых диодах по схеме Ларионова (см. рисунок 3.10).

Вольтметром магнитоэлектрической системы поочередно измеряют три напряжения; U cp - на выходе моста, U 1 - между положительным полюсом моста и землей, U 2 - между отрицательным полюсом моста и землей. Расчет сопротивления изоляции сети выполняют по формуле:

(3.9)

аналогичной формуле (3.4) для метода трех отсчетов вольтметра в сетях постоянного тока. Существенно, что в подобных случаях измерения должны производиться вольтметром именно магнитоэлектрической системы, так как носителями информации о величине сопротивления изоляции являются только средние значения напряжений. Предел измерений вольтметра должен соответствовать величине U cp , то есть для трехфазных сетей 380 В пригодны вольтметры со шкалой 0-600 В. Внутреннее сопротивление вольтметра выбирается в соответствии с рекомендациями, приведеннымивыше применительно к сетям постоянного тока.

Рисунок 3.10 - Измерение сопротивления изоляции сети двойного рода тока по способу ЛЭТИ

Этот метод пригоден для применения в однофазных и трехфазных сетях переменного тока, в сетях с управляемыми и неуправляемыми выпрямителями. Во избежание ошибок в расчетах здесь также рекомендуетсяприменять номограммы. Поскольку напряжение источников переменного тока стабильно, номограммы оказываются существенно более простыми (рис. 3.11).

Порядок выполнения работы

    Изучите теоретическую часть, прилагаемую к данной лабораторной работе.

    Сделайте расчет сопротивления своего тела (путь пролегания тока и площадь контактируемого с электродом участка тела – по заданию преподавателя).

    Проверьте расчет экспериментальным определением сопротивления указанного участка тела с помощью мультиметра М-830В.

    Сравните полученные результаты и сделайте соответствующие выводы.

КОНТРОЛЬНЫЕ ВОПРОСЫ

    Для чего производится контроль сопротивления изоляции электроустановок?

    Чем опасны емкостные явления между токопроводящими средами и землей?

    Как измерить сопротивление изоляции электроустановок при снятом рабочем напряжении?

    Как измерить сопротивление изоляции электроустановок методом уравновешенного моста?

    Как измерить сопротивление изоляции электроустановок методом трех отсчетов вольтметра?

    Что такое «номограмма»?

    Как измерить сопротивление изоляции электроустановок в сетях переменного тока?

    Как измерить сопротивление изоляции электроустановок в сетях двойного рода тока?

    Как измерить сопротивление изоляции электроустановок по схеме Ларионова?

Рисунок 3 .11 - Номограмма