Ас со сдвоенной головкой. Особенности конструирования ас со сдвоенными динамическими головками Как сделать акустическую систему своими руками

14.09.2012

Делаем сами акустическую колонку с двумя НЧ - СЧ головками

Опубликован частный материал про то как собрать акустическую систему с двойными СЧ или НЧ динамиками. Все описано простым языком для начинающих, но наше мнение остаеться тоже, что и было, лучше купите у нас.

Делаем сами акустическую колонку со сдвоенной головкой

Сдвоенная головка обладает некоторыми преимуществами по сравнению с одиночной. Например, у нее более гладкая амплитудно-частотная характеристика, нелинейные искажения меньше, нужный объем ящика акустического оформления тоже меньше.

Амплитудно-частотная характеристика сглаживается, так как головки, из которых состоит сдвоенная головка, взаимно демпфируются. У каждой одиночной головки в пределах допускаемых отклонений есть своя неравномерность АЧХ, обусловленная технологией производства, так что на АЧХ частоты пиков и провалов не совпадают. Часть этих пиков с провалами в сдвоенной головке взаимно компенсируются. Смотреть схему на рисунке №1.

Здесь нелинейные искажения уменьшаются, ведь сдвоенная головка - это симметричная электро-механоакустическая система, в отличие от одиночной. Из-за этого с ее обеих сторон сопротивление воздушной среды почти одинаковое. Оно обусловлено конструктивными особенностями головки, свойствами материала. У головок некоторых типов отсутствует различие гибкости подвеса при движении диффузора вперед или назад. В сдвоенной головке также не проявляется асимметрия распределения магнитной индукции, которая в зазоре магнитной системы и отрицательно влияет на уровень 2-й гармоники.

В низкочастотном звене требуется одна мощная сдвоенная головка. Ее можно поместить на горизонтальной доске, под которой расположен рупор, что направляет звук к слушателю и согласовывает механическое сопротивление с воздушной средой подвижной системы головки.

Объем ящика уменьшается, ведь результирующая гибкость подвеса такой головки снижается вдвое по сравнению с одиночной. А масса подвижной системы сдвоенной головки увеличивается в такое же количество раз. Именно поэтому не изменяется частота основного механического резонанса.

Может показаться, что увеличение числа головок, которые работают на одно отверстие АС, еще в большей степени позволяет уменьшить ее габариты. Но практически не получается сблизить головки настолько, чтобы геометрические размеры не отразились на фазовых сдвигах волн звука, которые излучаются крайними головками. Длина пути распространения волн, если считать от крайней внутренней до крайней наружной головки, соизмерима с длинами излучаемых волн. А это в итоге приводит к тому, что звуковые сигналы вычитаются и искажаются. Кстати, именно поэтому нельзя сдваивать среднечастотные и высокочастотные головки. К тому же, в данном случае станет ощутимым снижение КПД.

Итак, предлагаем читателям АС - громкоговоритель-фазо-инвертор, полезный внутренний объем которого - 50 л. Здесь применена сдвоенная головка из 6ГД 2 как низкочастотный излучатель. А как средне- и высокочастотный используются, соответственно, 15ГД-11, 6ГД-13. Вы также можете подобрать и другие динамики . Установлена сдвоенная головка на наклонной доске, ведь такое расположение доски со сдвоенной головкой позволяет рациональнее использовать объем ящика, а это уже позволяет уменьшить габариты АС и ее массу.

Главные технические характеристики АС таковы:

Номинальная мощность равна 12 Вт

Паспортная мощность - не менее 30 Вт

Номинальный диапазон частот - 30-18000 Гц

Номинальное электрическое сопротивление здесь 4 Ом.

Так как применяются высокоэффективные низкочастотные головки 6ГД-2, то при небольшой номинальной мощности (а именно, 12 Вт) громкость звучания не уступает промышленным АС, мощность которых 30 Вт. А ели говорить о качестве звучания, то большинство людей предпочитает АС, которая описывается ниже. Принципиальная схема АС изображена на рисунке № 2, а конструкция изображена на рисунке №3.

Ящик у АС (3) сделан из древесно-стружечной плиты, толщина которой 2 см, обклеенной бумагой, которая имитирует ценные породы древесины. В ней сдвоенная головка (17) закрепляется на доске (10), а среднечастотная головка (12) и высокочастотная (16) закрепляются на передней стенке (4). Что касается задней стенки (15), она съемная. От ящика среднечастотная головка изолирована боксом (13), который изготовлен из фанеры толщиной 1 см и закреплен на стенке (4) при помощи уголков (11) и шурупов.

Выходное отверстие у рупора сдвоенной головки (17) закрывается решеткой (дет. 1, 2), а отверстия, которые находятся напротив среднечастотной и высокочастотной головок, —выпуклыми металлическими сетками (соответственно, 6 и 8) вместе с кольцевыми декоративными обрамлениями (соответственно, 5 и 7). Рамку (1) согнули из полосы из алюминиевого сплава, сечение которой 5 х 20 мм. У прутьев (2) диаметр - 4 мм. Они изготовлены из нержавеющей стали, затем вставлены с помощью клея в отверстия, которые просверлены в верхней и нижней стороне рамки с шагом 2 см.

Отверстия под туннель фазоинвертора и кольцевые обрамления отверстий для остальных головок согнуты из полосы из того же материала сечением 5 х 10 мм. Обрамление среднечастотной головки (5) крепится с помощью четырех шпилек с резьбой МЗ, которые вставлены при помощи клея в отверстия, у которых диаметр 3,2 мм, глубина 7 мм. Отверстия просверлены в торце кольца с той стороны, которая обращена к панели (4). Перед вырезанием отверстия под головку (12) надо в передней стенке выбрать по наружному диаметру обрамления (то есть, 5) канавку шириной 20 мм, глубиной 2-3 мм с помощью кругореза с резцом, стамеской. Начиная собирать конструкцию, сначала закрепляют головку (12), потом при помощи проволочных скобок или гвоздей закрепляют сетку (6), а уже затем устанавливают на свое место обрамление (5), дополнительно прижимающее сетку к панели (4). Также в проточке передней панели закрепляют обрамление (7) высокочастотной головки (то есть, 16) при помощи клея.

Чтобы придать АС нормальный вид, наружные торцы рамки (1), обрамлений (5, 7, 9) требуется отполировать до блеска, а также окрасить черной краской их боковые поверхности (и внутренние, и наружные). В черный цвет нужно окрасить также металлические сетки (то есть, 6, 8), а еще внутренние поверхности туннеля фазоинвертора, поверхности рупора сдвоенной головки, также диффузородержатель нижней головки, а именно 6ГД-2, а еще всю площадь круга, что под сеткой (6), часть диффузородержателя головки (12), обращенную к слушателю, головки винтов, которые крепят ее.

Катушки L1, L2 из разделительного фильтра намотаны на каркасах с помощью провода ПЭВ-2 1,3. У каркасов диаметр 35 мм и длина 100 мм. У каждой приблизительно по 460 витков (а именно 6 слоев где-то по 75-76 витков).

Что касается конденсаторов C1, C3 — это МБГП, МБГО и подобные.

Монтируя АС, надо обратить внимание на то, с какой полярностью подключаются головки 6ГД-2, ведь при ошибке возникает акустическое короткое замыкание. При этом наружная головка — это ВА1.

Чтобы улучшить демпфирование сдвоенной головки, можно обклеить внутреннюю поверхность ящика АС звукопоглощающим материалом или же обить ее этим материалом.

Можно головку 6ГД-2 заменить на 8ГД-1, головку 15ГД-11 заменить на 4ГД-8 либо 5ГДШ-5-4, головку 6ГД-13 заменить на 3ГД-2. При этой замене размеры ящика сохраняются.

В этой статье описана конструкция малогабаритных акустических систем АС, предназначенных для использования в местах отдыха вдали от дома, которые обладают более высоким качеством воспроизведения музыкальных фонограмм, чем серийные переносные магнитофоны и магнитолы высоких классов.

Как сделать акустическую систему своими руками

В статье кратко обоснованы пути и причины выбора такого технического решения. Данные акустические колонки могут быть построены начинающими радиолюбителями, так как требуют небольшое количество материалов, соответственно, малый объем трудозатрат на изготовление и просты в настройке. Технология изготовления акустических систем своими руками подробно описана в расчете на начинающих радиолюбителей.

Конструирование малогабаритных акустических систем своими руками было вызвано необходимостью во время отпуска вдали от дома слушать музыкальные записи с более высоким качеством, чем это позволяют переносные магнитофоны и магнитолы высоких классов. Речь не идет о высококачественном звучании категории Hi-Fi, поэтому необходимо было найти компромиссный вариант между качеством звучания и объемом аппарата.

Двухполосная акустика Мелодия-101-стерео

За основу была взята двухполосная акустическая система радиолы I класса «Мелодия-101-стерео» с динамическими головками типов 10ГДН-1 (6ГД-6), 6ГДВ-1 (ЗГД-2) и с габаритными размерами 300x171x168 мм, но с другой конфигурацией и несколько меньшим объемом ящика акустической системы (фото в начале сайта).

Ящики были изготовлены из ламинированной фанеры толщиной 12 мм. Боковые стенки и лицевая панель, с вырезанными отверстиями под динамические головки, соединены между собой с помощью деревянных реек сечением 15×15 мм, клея ПВА и коротких гвоздей.

Гвозди должны входить в фанеру на глубину не более 8 мм. Задняя часть боковых стенок вначале также была обшита рейками сечением 15х 15 мм по всему периметру на расстоянии 12 мм от края для крепления задней стенки шурупами.

Первоначально ящик акустической системы был закрытого типа, в нем были установлены две электродинамические головки типов 25ГДН-3 (15ГД-14) и 6ГДВ-1 (ЗГД-2) с простейшим фильтром, аналогично «Мелодии- 101 -стерео», из одного разделительного конденсатора между головками емкостью 2 мкФ.

Эти динамики выбраны из следующих соображений:

  • диапазон воспроизводимых частот динамика 25ГДН-3 65-5000 Гц;
  • частота основного резонанса 55 Гц;
  • номинальное электрическое сопротивление 4 Ом;
  • диапазон воспроизводимых частот динамика 6ГДВ-1 5000…18000 Гц;
  • номинальное электрическое сопротивление 8 Ом .

В результате этого получается полная стыковка диапазонов воспроизводимых частот от 65 до 18000 Гц без среднечастотного динамика. Практические испытания звучания этой акустической системы на слух дали результат, который оказался ниже ожидаемого в части воспроизведения низших звуковых частот. Очевидно, сказалось уменьшение объема ящика.

Проанализировав все возможные способы повышения качества звучания, при тех же габаритах акустической системы, было принято решение дополнить ящик щелевым фазоинвертором с тыльной стороны и установить сдвоенные головки типа 25ГДН-3, у которых результирующий эквивалентный объем в два раза меньше, чем у одной такой же головки .

Объем имеющегося ящика, как бы, увеличивается почти в два раза для наружной головки, учитывая, что внутренняя головка занимает часть полезного объема. В результате уменьшение объема ящика по сравнению с акустической системой «Мелодии-101- стерео» было компенсировано применением сдвоенных головок.

Чертежи акустической системы

Конструкция акустической системе со сдвоенными динамиками и фазоинвертором показана на рис. 1, где обозначены:

  1. Перегородка фазоинвертора.
  2. Направляющая рейка.
  3. Рейки крепления боковых стенок, лицевой панели и задней стенки.

Более качественно воспроизводят низшие частоты звукового диапазона сдвоенные головки по типу «диффузор к диффузору» (рис.2), но они заваливают средние частоты. При желании построить более высококачественную малогабаритную акустическую систему достаточно дополнить ее среднечастотной головкой, например, типа 3ГДШ-8 и разделительным фильтром аналогично использованному в акустической системе . При этом высоту акустического ящика (рис. 1) необходимо увеличить на размер диаметра СЧ головки плюс 20 мм.

Сдвоенные динамики по типу «диффузор за диффузором», нормально воспроизводят средние частоты, так как диффузор наружной головки обращен к слушателю лицевой стороной, и улучшают воспроизведение низших частот и АЧХ по сравнению с одиночной головкой . Данная колонка является двухполосной, что нужно учитывать, поэтому в данном случае вариант сдваивания головок по типу «диффузор за диффузором» является более приемлемым. Чертеж узла крепления сдвоенных головок показан на рис.3.

Для крепления сдвоенных головок к лицевой панели вырезают из фанеры толщиной 5…6мм
кольцо 10 с внутренним диаметром 110 мм и наружным — 160 мм, на которое соосно накладывают головку и размечают крепежные отверстия карандашом. Отверстия просверливают сверлом диаметром 3,3 мм. Кольцо с отверстиями накладывают на место крепления сдвоенных головок к внутренней стороне лицевой панели 11 и размечают центры углублений для головок крепежных винтов 7. В отверстия кольца 10 из фанеры вкручивают винты 7 М4 с круглыми головками и длиной 25 мм.

Если фанера очень плотная, можно предварительно нарезать в ней резьбу метчиком М4. После этого на лицевой панели делают углубления для головок крепежных винтов диаметром 7 мм и глубиной 4 мм. Эту операцию необходимо выполнять очень осторожно, чтобы не просверлить панель насквозь. Предварительно для точного размещения крепежных винтов углубления делают сверлом диаметром 2 мм, зажатым в ручные тиски, а затем таким же способом углубления расширяют сверлом диаметром 7 мм.

После этого кольцо со стороны лицевой панели и место его установки на внутренней стороне этой панели обильно смазывают клеем ПВА или эпоксидной смолой, включая углубления для головок винтов. Кольцо устанавливают на место и прижимают или прибивают короткими гвоздями. Излишки клея с передней стороны лицевой панели сразу же удаляют влажным тампоном, а эпоксидной смолы — ацетоном. Кольцо в таком состоянии находится до полной полимеризации клея (для надежности лучше выдержать 24 ч. так как прочность этого крепления очень важна).

Для сдваивания динамических головок необходим разделительный цилиндр 4, который герметизирует объем воздуха между диффузорами и на который опирается внутренняя головка. В авторском варианте цилиндр склеен из двух слоев линолеума на войлочной основе толщиной 5 мм. Внутренний диаметр цилиндра 114 мм, высота 60 мм.

Высота цилиндра может быть другой, в зависимости от модификации головок, но должна быть такой, чтобы зазор между диффузором внутренней головки и магнитной системой наружной головки был не менее 10… 15 мм. Для изготовления первого слоя цилиндра полоску линолеума 358×60 мм склеивают торцами клеем «Момент» войлочной основой внутрь и по наружной поверхности фиксируют скотчем.

Вторую полосу шириной 60 мм и длиной, определяемой по месту, наклеивают на первый слой цилиндра и фиксируют скотчем. Торцы второго слоя цилиндра должны стыковаться с противоположной стороны. В боковых стенках готового цилиндра напротив выводов внешней головки сверлят отверстия по диаметру монтажных проводников, которыми эта головка подключается к схеме акустической системе.

Для крепления (рис.3) обеих головок необходимо также иметь четыре втулки 6 длиной 25…30 мм с внешним диаметром 8… 10 мм со сквозной резьбой М4, четыре шпильки 5 длиной 60 мм с резьбой М4 на обоих концах по 20 мм, 8 гаек М4,12 картонных или текстолитовых шайб 2.8. Вначале на винты 7 приклеенного кольца устанавливают внешнюю динамическую головку 9 и закрепляют втулками 6 через шайбы 8. В отверстия разделительного цилиндра 4 вставляют достаточной длины зачищенные и залуженные монтажные проводники. Цилиндр устанавливают на динамическую головку 9, а проводники припаивают к ее выводам.

Во втулки 6 ввинчивают шпильки 5 на которые навинчивают опорные гайки с шайбами, и устанавливают внутреннюю головку 3 до плотного совмещения с разделительным цилиндром 4. На концы шпилек 5 надевают картонные или текстолитовые шайбы 2 и навинчивают гайки 1. ВЧ головку 6ГДВ-1 с заранее подпаянными проводниками крепят к лицевой панели обычным способом шурупами. Конденсаторы С1 и С2 приклеивают к днищу акустической системе клеем «Момент». На задней стенке крепят гнездо типа «Тюльпан» для подключения соединительного кабеля между акустической системой и усилителем мощности.

После крепления деталей их соединяют между собой согласно принципиальной схеме, показанной на рис.4. Конденсатор С1 80 мкФ состоит из нескольких стандартных, включенных параллельно. На схеме показано, что внутренняя головка зашунтирована конденсатором С1. В связи с тем, что длина звуковых волн среднечастотного диапазона соизмерима с расстоянием между диффузорами, звуковые сигналы, излучаемые внутренней головкой, приходят к диффузору внешней головки с существенными фазовыми сдвигами, искажающими АЧХ.

Например, звуковой сигнал с частотой 3000 Гц, длина волны которого равна 11,5 см, пройдя расстояние между диффузорами 6 см, поменяет фазу почти на противоположную и затормозит излучение этой частоты внешней головкой, т.е. создаст провал АЧХ на этой частоте. В этом варианте сдвоенных головок средние частоты должны воспроизводиться только внешней головкой. а низшие частоты, длины волн которых значительно больше расстояния между диффузорами, — воспроизводиться обеими головками и проходом фазойнвертора.

Сопротивление шунтирующего конденсатора на верхней частоте СЧ диапазона должно быть в несколько раз меньше сопротивления внутренней головки. Полное электрическое сопротивление динамика 25ГДН-3 на частоте 1 кГц равно 4 Ом, а на частоте 5 кГц составляет примерно в 5 раз больше. В данном случае на частоте 5 кГц сопротивление равно 0,4 Ом. В аналогичных акустических системах, габариты которых не являются критичными, внутреннюю головку можно шунтировать последовательным LC-контуром, перекрывающем полосу частот примерно 400 Гц…6 кГц.

В трехполосных акустических системах сдвоенные головки любого типа работают только на низших звуковых частотах, а средние и высокие частоты подавляются фильтром НЧ кроссовера, поэтому дополнительное шунтирование внутреннего динамика не требуется. Для прохода фазоинвертора на лицевой панели недостаточно места, поэтому было принято решение, поместить его с тыльной стороны. На работу динамических головок в области их основного механического резонанса место размещения прохода фазоинвертора особой роли не играет. Единственным недостатком этого варианта является то, что такую АС нельзя вплотную прислонять к стенкам помещений или мебели.

Для простоты изготовления и настройки фазоинвертор выполнен в виде узкой щели, образованной верхней стенкой ящика и плоской перегородкой 1 по всей его ширине (рис.1). Перегородка 1 выполнена из фанеры толщиной 6 мм и закреплена в пазах, образованных верхними рейками 3 крепления боковых стенок ящика и направляющими рейками 2. закрепленными на расстоянии 6 мм от верхних боковых реек. Верхнюю рейку 3 крепления задней стенки перемещают ниже на расстояние 21 мм от верхней стенки. Заднюю стенку обрезают сверху на 21 мм и крепят шурупами.

Изначально перегородка 1 имеет площадь примерно равную верхней стенке и возможность перемещаться в пазах для настройки фазоинвертора. Настройка фазоинвертора заключается в достижении минимума напряжения на сдвоенных головках на частоте основного резонанса 55 Гц путем изменением длины прохода перемещением перегородки. Более подробно настройка фазоинвертора описана в (4) и (5). После настройки фазоинвертора отмечают линию стыка перегородки с задней стенкой карандашом. Перегородку вынимают, лишнюю часть перегородки обрезают, а торец ее обрабатывают наждачной шкуркой.

После этих операций снимают заднюю стенку, а пазы, поперечную рейку и края перегородки смазывают клеем ПВА. Перегородку вставляют в пазы на свое место, а выдавленные части клея равномерно распределяют узкой кистью вдоль стыков перегородки с рейками. После полной полимеризации клея проверяют прочность крепления перегородки на отсутствие ее вертикального перемещения в пазах для предотвращения дребезжания. При обнаружении щелей между перегородкой и направляющими рейками щели заливают клеем ПВА.

После этого крепят заднюю стенку — и акустическая система готова к эксплуатации. Перед установкой задней стенки на рейки крепления наносят слой пластилина толщиной около 1 мм для герметизации корпуса акустической системы. В заключение следует отметить, что приведенная модернизация акустической системы дала положительные результаты и успешно используется в течение нескольких лет.

Попалась вруки пара среднечастотных динамиклв далекого советского периода 4гд-35, а тут еще и аудиомаркер наш задумался темой открытых ящиков и прочее, вот в тему.
Многие радиолюбители стремятся повысить качестню звучания акустических систем промышленного изготовления. Предлагаемый мною способ усовершенствования звуковых колонок 8АС-3 включает в себя применение сдвоенных динамических головок и разделение спектра частот на три полосы.

Сдвоенная динамическая головка состоит из двух «динамиков» 4ГД-35, используемых в данной системе. В качестве высокочастотной и среднечастотной головок применены «динамики» 2ГД-36 и 4ГД-8Е. Последний выбран потому, что имеет небольшие габариты и повышенное звуковое давление - 0,3 Па.

Рис. 1. Передняя панель.

Рис. 2. Перегородка: 1 - планка (сечение 20ХЗО мм) 2 - штатная передняя панель.

Рис. 3. Принципиальная схема акустической системы на 2,2 Ом.

Рис. 4. Принципиальная схема восьмиомной акустической системы.

Изготовьте новую переднюю панель и выпилите ч ней три отверстия по размерам диффузоров головок (рис. I). Затем изготовьте перегородку из ДСП толщиной 20 мм (рис. 2) для установки второго «динамика» 4ГД-35 и элементов разделительных фильтров. В этом случае используется также часть штатной передней панели, которая устанавливается на планку. Аналогичная планка закреплена и на днище корпуса.

Электрическая схема громкоговорителя состоит из четырех динамических головок. Если необходимо сохранить прежнее сопротивление постоянному току (2,2 Ома) акустической системы, воспользуйтесь схемой, представленной на рисунке 3. Сопротивление акустической системы можно увеличить до 8 Ом (рис. 4), что позволит эксплуатировать ее практически с любым усилителем звуковой частоты, развивающим на восьмиомной нагрузке выходную мощность до 20 Вт, а на четырехомной нагрузке - не более 30 Вт.

Рис. 5. Каркас для катушек L1 и L2. Рис. 6. Каркас катушки L3.

Частота разделения низкочастотной и среднечастотной головок в двухомном варианте равна 1000 Гц, а между СЧ и ВЧ головками - 5000 Гц. В восьмиомном варианте эти частоты соответственно равны 850 и 7000 Гц.

Обратите внимание на необычное подключение средне-частотного «динамика» к катушке L2, позволяющее ограничить подводимую мощность на этот «динамик» до 4 Вт и избегать тем самым перегрузок.

В первой схеме (рис. 3) катушки намотаны проводом ПЭЛ-1 0,81 на каркасах 047 мм. L1 и L3 содержат по 87 витков при ширине намотки 22 мм, a L2 - 160 витков.

Резисторы R1 и R2 изготавливают из нихромового провода 00,3 мм. Резистор R3 МЛТ-0,5. Необходимую емкость 2,8 мкФ получают путем параллельного включения двух конденсаторов на 1 и 2 мкФ с учетом разброса их номиналов.

По второй схеме (рис. 4) катушки наматывают проводом ПЭВ-1 или ПЭВ-2 на каркасах (рис. 5, 6), выточенных из фторопласта. Катушку L1 мотают виток к витку в пять рядов, всего 252 витка. Для улучшения качества намотки между двумя рядами провода нужно проложить слой тонкого изоляционного материала. L3 содержит 100 витков провода 00,72 мм.

В статье автора, предложившего в 70-х годах конструкцию сдвоенных динамических головок, рассказано об особенности расчета акустических систем с такими головками. Их достоинства - в снижении нелинейных искажений на низких частотах и уменьшении эквивалентного объема воздуха для подобных излучателей.

Традиционные динамические голов-1 ки имеют ряд недостатков среди которых наиболее существенны заметная неравномерность АЧХ и нелинейные искажения, возрастающие с увеличением мощности и понижением частоты звуковых сигналов.

Эти недостатки обусловлены конструкцией динамических головок (несимметричная форма диффузора, неравномерное и несимметричное распределение магнитной индукции в воздушном магнитном зазоре, нелинейность гибкости подвеса подвижной системы и др.), а также технологией их производства .

Искажения звуковых сигналов особенно ощутимы в низкочастотном диапазоне, где для высококачественного воспроизведения музыкальных сигналов необходима мощность значительно больше, чем для воспроизведения средних и высоких звуковых частот.

Работы по совершенствованию конструкций и технологии производства динамических головок ведутся постоянно. При этом разрабатывают новые формы магнитных систем, звуковых катушек, диффузоров, подвесов подвижных систем, применяют новые материалы.

Качество воспроизведения АС с современными динамическими головками существенно повысилось и удовлетворяет большинство потребителей, но конструкция головок остается несимметричной. Добиться полной симметрии электромеханической системы в традиционной конструкции динамической головки пока не удается.

Для уменьшения четных гармоник в излучении низкочастотных колебаний электродинамическими головками некоторые зарубежные фирмы стали устанавливать в колонку четыре однотипные головки, размещая на передней панели одну пару диффузорами наружу, а другую пару - диффузорами внутрь ящика, как, например, в низкочастотном блоке АС Audio-Pro В4-2000 .

Установка большого числа одинаковых головок на лицевой панели колонки при расширенной полосе частот создает интерференцию звуковых волн и сужает диаграмму направленности излучения.

Оптимальный вариант в решении вопроса высококачественного воспроизведения низких частот и получения диаграммы направленности излучения без провалов - установка одной пары сдвоенных головок необходимой мощности по типу "диффузор к диффузору". Такое расположение стали применять в выпускаемых зарубежными фирмами АС через несколько лет после опубликования статьи о сдвоенных динамических головках .

Сдвоенные динамические головки используются зарубежными фирмами и радиолюбителями при изготовлении акустических систем (АС) для высококачественного воспроизведения низких частот звукового диапазона.

Примером могут быть АС датской фирмы JAMO (JAMO PUSH-PULL, JAMO РР3000) и АС С. Гурина . Сдвоенные головки типа "диффузор к диффузору" (рис. 1 слева) используются в АС только для воспроизведения низких частот.

Сдваивание обычных НЧ головок по этому типу позволяет простым путем получить симметричную конструкцию, превосходящую по нелинейным и частотным искажениям современную НЧ головку аналогичной мощности.

Сдвоенные головки типа "диффузор за диффузором" (рис. 1 справа) в основном рекомендуется использовать в АС небольшой мощности для воспроизведения всего звукового диапазона с применением широкополосных головок. Для повышения качества воспроизведения высоких частот рекомендуется такие АС дополнить высокочастотной головкой.

Рис. 1. Сдвоенные головки типа диффузор к диффузору и диффузор за диффузором.

Параметры сдвоенных динамических головок отличаются от параметров одиночных. Детального технико-экономического анализа и расчетов АС с такими головками в литературе нет, поэтому часть публикаций в журналах по использованию сдвоенных головок содержат наряду с правильными выводами грубые ошибки.

Прежде чем перейти к особенностям расчета громкоговорителей со сдвоенными головками, полезно привести анализ физических процессов, происходящих в них и влияющих на их основные параметры, для исключения ошибок при конструировании АС. Физические процессы в головках, сдвоенных по типам "диффузор к диффузору" и "диффузор за диффузором", одинаковы. Разница между ними состоит в качестве воспроизведения звуковых сигналов, о чем детально будет описано ниже.

Диффузоры сдвоенных головок связаны между собой объемом воздуха, заключенного между ними. Этот объем должен быть герметизирован во избежание нежелательных явлений .

Оба диффузора при воспроизведении звукового сигнала движутся синфазно, т. е либо оба наружу, либо оба внутрь корпуса АС Диффузор наружной головки излучает звуковые волны во внешнее воздушное пространство, а диффузор внутренней головки помогает наружному преодолевать упругость воздуха внутри корпуса громкоговорителя, имитируя ящик большего объема, и совершать большую амплитуду по сравнению с такой же одиночной головной при том же токе звуковой катушки и в аналогичных условиях. Объем воздуха между диффузорами в некоторой степени оказывается присоединенной массой, влияя на фактические параметры этого тандема.

Звуковые колебания в объеме воздуха, заключенного между диффузорами, должны быть синфазными с колебаниями внешнего диффузора. Однако идеально синфазными в широкой полосе они быть не могут, так как с ростом частоты сдвиг по фазе акустических колебаний от внутреннего диффузора и собственно колебаний внешнего диффузора нарастает.

По этой причине сдвоенные головки могут корректно работать только в той полосе частот, в которой длина звуковых волн много больше расстояния между их диффузорами, г. е. только в низкочастотной части звукового спектра. Например, для верхней частоты FH4 150 Гц полосы НЧ длина волны (формула):

где Сзв - скорость звука в воздухе (м/с).

Среднее расстояние г между диффузорами сдвоенных головок 6ГД-2 РРЗ равно 5 см, и разница в фазе колебаний внешнего диффузора и акустических колебаний от внутреннего диффузора составляет (формула):

На более низких частотах этот фазовый сдвиг еще меньше, и это практически не вносит искажений при воспроизведении реальных звуковых сигналов в полосе НЧ.

Для верхней частоты полосы СЧ, равной 5 кГц, длина волны составит фсч = 344/5000 = 0,069 м = 6.9 см. Среднее расстояние г между диффузорами сдвоенных головок ЗГД-1 РРЗ равно 3 см, и разница в фазе колебаний составит(формула):

То есть звуковая волна от внутреннего диффузора к внешнему придет практически в противофазе и создаст значительный провал АЧХ на этой частоте. Это и является той причиной, из-за которой нельзя сдваивать СЧ головки, тем более что на этих частотах амплитуды колебаний звуковой катушки и диффузора СЧ головки значительно меньше, чем у НЧ головок. Это позволяет обеспечить высокое качество звучания средних частот в традиционном варианте соответствующими современными головками.

По этой же причине при сдваивании широкополосных головок для воспроизведения всего диапазона частот сдвоенной головкой необходимо звуковую катушку внутренней головки зашунтировать конденсатором соответствующей емкости, сопротивление которого на частоте 1000 Гц примерно в десять раз меньше модуля электрического сопротивления головки .

При этом эффект сдвоенных головок проявится только в полосе НЧ, а сигналы более высоких частот будут воспроизводиться только внешней головкой Для таких АС рекомендуется сдваивать головки по типу "диффузор за диффузором".

Широкополосные головки лучше воспроизводят средние и высокие частоты передней частью диффузора, а некоторые из них снабжены дополнительным конусом для воспроизведения высших частот.

Естественно, в АС со сдвоенными широкополосными головками качество воспроизведения низких частот существенно улучшится, а объем ящика уменьшится по сравнению с применением в АС таких же одиночных головок. При сдваивании их по типу "диффузор к диффузору" средние и высокие частоты ослабляются фильтром НЧ кроссовера.

Схемы соединений сдвоенных головок приведены на рис. 2 в соответствии с конструктивным способом сдваивания. Варианты соединения по схемам на рис. 2, а,б не требуют дополнительного блокирования головки внутри корпуса на частотах, где задержка по фазе становится существенной. При "тандемном” объединении, как показано на рис. 2, в, г, задержка по фазе больше, поэтому необходимы блокирующие реактивные цепи для ограничения полосы эффективного излучения тыловой головки (ВА2).

Рис. 2. Схемы соединений сдвоенных динамических головок.

При объединении в один блок более двух головок появятся недопустимые фазовые сдвиги звуковых волн между крайними головками даже в низкочастотном диапазоне из-за большого расстояния между ними, а увеличенные габариты этого блока необходимо добавить к расчетному объему ящика АС.

В результате общий объем АС уменьшится не столь существенно, как при сдвоенных головках, но неоправданно увеличится стоимость АС и более мощного усилителя.

Кроме того, амплитуда колебаний диффузора наружной излучающей головки в этом случае не может возрасти больше, чем это получается при сдваивании двух головок из-за ограниченных возможностей подвеса и звуковой катушки. Совершенно очевидно, что, кроме существенных потерь в КПД и полезном объеме ящика АС, в результате увеличения числа головок ничего не получится.

Для высококачественных АС рекомендуется сдваивать головки по типу "диффузор к диффузору", и только для воспроизведения низких частот. Этот вариант эффективно подавляет все виды искажений , особенно четные гармоники, которые вызывают ощутимые нелинейные искажения .

Приведенный ниже сравнительный анализ покажет что основные параметры сдвоенных головок, касающиеся качества воспроизведения звуковых сигналов, существенно выше одиночных.

Нелинейные искажения

Нелинейные искажения обычных электродинамических головок заложены в традиционные конструкциях магнитных систем с несимметричным и неравномерным распределением магнитной индукции в магнитном воздушном зазоре и несимметричной конической формой диффузоров, обладающих "парашютным эффектом” сопротивления воздуху, а также несимметричным размещением звуковых катушек в магнитной системе и нелинейной гибкостью подвесов подвижных систем .

Рис. 3. Сечение звуковой катушки 1 в магнитной системе 2 и графики зависимости магнитной индукции.

В сдвоенных головках по типу "диффузор к диффузору" достигаются следующие эффекты:

  • нелинейность гибкости подвесов подвижных систем частично компенсируется:
  • результирующая форма излучателя становится симметричной;
  • компенсируется несимметричное расположение звуковых катушек в магнитных системах; это наиболее полно достигается путем подбора экземпляров головок с одинаковым смещением звуковых катушек, вызванным погрешностью в сборке,
  • результирующее смещение подвижной системы в поршневом диапазоне сдвоенных головок становится симметричным относительно магнитной системы вследствие компенсации силы притяжения звуковой катушки с током к магнитопроводу и неравномерности магнитной индукции в зазоре магнитной системы.

На рис. 3 показаны сечение звуковой катушки 1 в магнитной системе 2 и графики зависимости магнитной индукции В1 и В2 в области зазоров сдвоенных головок ВА1. ВА2. Значения х, и х2 соответствуют глубине зазора.

В головках, сдвоенных по типу "диффузор за диффузором", устраняются только несимметричное расположение звуковых катушек в воздушных магнитных зазорах путем подбора экземпляров головок с противоположным смещением звуковых катушек, а также неравномерность АЧХ в низкочастотной полосе .

Паспортная мощность

Паспортная мощность электродинамической головки - это мощность, при которой головка может длительно работать без повреждений Эти мощности у сдвоенных головок любого типа в два раза больше, чем у аналогичных одиночных головок.

Электрическое сопротивление

Электрическое сопротивление электродинамической головки - величина комплексная, которая зависит от частоты звукового сигнала и достигает максимума по модулю на частоте основного резонанса . V сдвоенных головок любого типа при последовательном соединении звуковых катушек сопротивление в два раза больше, а при параллельном - в два раза меньше. чем у аналогичных одиночных головок.

Амплитудно-частотная характеристика (АЧХ)

Амплитудно-частотная характеристика (АЧХ) электродинамической головки представляет собой зависимость звукового давления от частоты воспроизводимого сигнала при неизменной подводимой к звуковой катушке мощности.

Все выпускаемые до настоящего времени головки имеют неравномерные АЧХ , причем АЧХ разных экземпляров одного и того же типа головок имеют разную неравномерность и несколько отличные частоты основного резонанса подвижных систем.

В сдвоенных головках пики и провалы в полосе НЧ частично компенсируются и АЧХ получается более гладкой, а в полосах СЧ и ВЧ эти головки не работают как сдвоенные по указанным выше причинам.

Коэффициент полезного действия (КПД)

Коэффициент полезного действия (КПД) электродинамической головки зависит от параметров ее конструктивных элементов (формула):

где к - коэффициент пропорциональности, учитывающий удельное сопротивление медного провода и объем звуковой катушки; В - магнитная индукция в воздушном магнитном зазоре; Sзфф - эффективная площадь диффузора; М, - масса подвижной системы.

Из этого соотношения следует, что наибольшее звуковое давление (громкость) создают головки с наибольшим, легким диффузором и более мощной магнитной системой в сравнении с другими головками такой же мощности.

Однако такие головки требуют большего объема ящика АС, который, как будет показано ниже, прямо пропорционален эффективной площади диффузора, гибкости подвеса подвижной системы и обратно пропорционален массе подвижной системы. В сдвоенных головках эффективная площадь диффузора и гибкость подвеса подвижной системы в два раза меньше, а масса подвижной такая же, как у двух одиночных головок.

В связи с этим результирующий КПД сдвоенных головок уменьшается, однако это окупается снижением всех видов искажений, нижней граничной частоты воспроизводимого диапазона и уменьшением объема ящика АС .

Эквивалентный объем ЭДГ

Эквивалентный объем электродинамической головки - это объем воздуха в ящике, гибкость которого равна гибкости подвижной системы головки. В сдвоенной головке подвесы работают параллельно, поэтому результирующая гибкость ее в два раза меньше одной одиночной. Соответственно эквивалентный объем сдвоенной головки в два раза меньше одной и в четыре раза - двух одиночных головок (формула):

где Vосг - эквивалентный объем сдвоенной головки; Vэ1. Vэ2 - эквивалентные объемы одиночных головок.

Частота основного резонанса ЭДГ

Частота основного резонанса электродинамической головки с подвижной системой в виде диффузора гофра, центрирующей шайбы и звуковой катушки, обладающей массой и гибкостью, представляет собой механическую резонансную систему. Частота резонанса (в герцах) определяется выражением из Г11 (формула):

где М, - масса подвижной системы; Сп - гибкость подвеса подвижной системы.

В сдвоенных головках Мг в два раза больше, а Сп в два раза меньше, чем у одиночных головок, поэтому, если не учитывать массу воздуха между диффузорами, частота основного резонанса при сдваивании головок не меняется.

Приведенных параметров достаточно для расчета АС со сдвоенными головками. Методика расчета подобных АС такая же, как и с одиночными головками. Особенность же заключается в правильном определении параметров сдвоенных головок исходя из параметров используемых одиночных головок.

Объем ящика АС определяется из зависимости частоты основного резонанса головки от его объема. При установке любой головки в ящик закрытого типа частота основного резонанса повышается, и тем больше, чем меньше объем ящика.

Основным параметром ящика является гибкость внутреннего объема воздуха, которая прямо пропорциональна его объему и обратно пропорциональна эффективному диаметру диффузора в четвертой степени , формула:

Из этой зависимости следует, что гибкость воздуха в большей степени зависит от диаметра диффузора, чем от объема ящика, поэтому уменьшение диаметра диффузора сдвоенной головки относительно двух одиночных существенно повышает Ся.

Нельзя считать, что эквивалентный диаметр сдвоенных головок в два раза меньше двух одиночных. Пересчет нужно вести через эффективную площадь диффузоров, т. е. эквивалентный диаметр двух одиночных головок будет равен по формуле:

Эффективный диаметр диффузора сдвоенных головок меньше в 1,41 раза по сравнению с эквивалентным эффективным диаметром двух одиночных головок.

Обычно для расчета объема ящика АС применяют проверочный ящик, но это не всегда удобно и требует дополнительных затрат труда и материалов Проще, исходя из параметров головок, подлежащих сдваиванию, и желаемого результата, задать новую частоту основного резонанса fр нов и определить объем ящика по формуле:

где р - плотность воздуха (1,2 кг/м3); с - скорость звука в воздухе (344 м/с); fp - частота основного резонанса головки (Гц); Sд эфф - эффективная площадь диффузора (м2); Мг - масса подвижной системы головки (кг).

Если ящик окажется больше желаемого, тогда придется выбрать несколько выше fр нов„ и пересчитать объем ящика. По крайней мере, это менее трудоемко, чем изготовление проверочного ящика.

Эта формула также показывает, что объем ящика АС со сдвоенными головками значительно меньше традиционного варианта, так как эффективная площадь диффузора в два раза меньше, а масса подвижной системы в два раза больше.

В заключение следует отметить, что все известные методики расчетов АС. с учетом приведенных выше изменений параметров, пригодны для конструирования АС со сдвоенными головками всех типов (открытый ящик, фазоинвертор, лабиринт, с рупором, ПАС и т. п.). При конструировании АС со сдвоенными головками необходимо учитывать, что головки вместе с элементами креп

Рис. 4. Варианты акустического оформления.

ления занимают определенный объем, который необходимо прибавлять к рассчитанному объему ящика. Максимальное качество звучания достигается при установке сдвоенных головок в фазоинвертор. Для более рационального использования объема ящика АС автором разработана высококачественная АС с применением НЧ узла, защищенного авторским свидетельством .

Также рекомендуются варианты установки сдвоенных головок, приведенные на рис. 5. Выходные отверстия могут быть круглыми, овальными или прямоугольными, открытыми или закрытыми декоративными решетками. В качестве материала для ящиков рекомендуется применять ДСП которая более доступна и не издает призвуков, как фанера или доска.

Учитывая, что внутренняя головка демпфирует отраженные звуковые волны внутри ящика , звукопоглощающее покрытие внутренних стенок можно не применять.

Все варианты акустического оформления на рисунке 4 предусматривают связь с внешним воздушным пространством через некоторое подобие рупора, который улучшает согласование высокого механического сопротивления электромеханической системы сдвоенных динамических головок с низким сопротивлением излучения, что дополнительно повышает качество звучания АС.

А. Журенков, г. Запорожье, Украина. Р-2010-05.

Литература:

  1. Эфрусси М. Громкоговорители и их применение, 1976.
  2. Алдошина И., Войшвилло А. Высококачественные акустические системы и излучатели, 1985.
  3. Журенков А. Сдвоенные динамические головки. Р-1979-4.
  4. Проспект фирмы JAMO. Danish 1985.
  5. Гурин С. Акустическое оформление громкоговорителей. Р-1991-4.
  6. Жбанов В. О громкоговорителях со сдвоенными головками. Р-1983-2.
  7. Жбанов В. Пути уменьшения габаритов акустических систем. Р-1987-2.
  8. Журенков А. АС со сдвоенной головкой. Р-1989-4.
  9. Журенков А. Низкочастотный узел акустической системы.

А.Н. Журенков, г. Запорожье. PA 10" 2009
После публикации моей статьи «Сдвоенные динамические головки» («Радио» 5/1979) это техническое решение
вызвало большой интерес у радиолюбителей и разработчиков акустических систем. Об этом свидетельствуют
многочисленные письма радиолюбителей, статьи в журналах «Радиоаматор» и «Радио», проспект фирмы
«Jamo» 1985, выпустившей ряд АС со сдвоенными головками, книга Карлаша В. , «Справочник
радиолюбителя» Те-рещука Р. с соавторами и др.


Сдвоенные головки используются для более качественного воспроизведения низких частот звукового
диапазона. Сдвоенные головки типа «диффузор к диффузору» (рис.1) используются в АС только для
воспроизведения низких частот. Сдвоенные головки типа «диффузор за диффузором» (рис.2), в основном,
рекомендуется использовать в АС для воспроизведения всего звукового диапазона с применением
широкополосных головок.
Естественно, сдвоенные головки имеют параметры, отличающиеся от таких же одиночных, и требуют более
детального технико-экономического анализа, а АС с такими головками - доступных методик расчета. Понимая
это, я в 1979 году подготовил и направил статью по этому вопросу в журнал «Радио», но статья была
заблокирована рецензентом Иофе В.К. под предлогом неэффективности применения сдвоенных головок в АС.
Это говорит о том, что ученые и специалисты не сразу поняли суть физических процессов, происходящих в
сдвоенных головках.
И только в 1983 году, возможно, после зарубежной информации о выпуске АС со сдвоенными головками,
статьи о сдвоенных головках были разблокированы. Об этом свидетельствует статья радиолюбителя Жбанова
В. «О громкоговорителях со сдвоенными головками» («Радио» 2/1983). Автор сделал ряд грамотных выводов,
но в своей АС применил сдвоенную головку менее эффективного типа «диффузор за диффузором» и предложил
сдваивать среднечастотные головки , что недопустимо по причинам, которые будут изложены ниже. К
несчастью, эти ошибки попали и в «Справочник радиолюбителя» Терещука Р. В 1987 году Жбанов В. в статье
«Пути уменьшения габаритов акустических систем» предоставил результаты экспериментов, которые
показали, что только симметричная сдвоенная головка подавляет излучение четных гармоник и другие виды
искажений, а также предложил в один блок устанавливать п головок. Теоретически это возможно, а практически
такой блок из п головок будет иметь большие габариты, которые необходимо добавлять к расчетному объему
ящика. В результате этого общий объем ящика уменьшится не столь существенно, появятся фазовые сдвиги
звуковых волн даже в низкочастотном диапазоне из-за большого расстояния между крайними головками, и
неоправданно увеличатся стоимость АС, а также потребуется более мощный усилитель.
Другие авторы публикаций также допустили ряд существенных ошибок в своих конструкциях АС со
сдвоенными головками. Кратко в качестве примеров можно привести три статьи из разных журналов. Автор
Алейнов А. в статье «НЧ излучатель с симметричной магнитной системой» («Радио» 2/2001) предложил
сложную нетехнологичную и, очевидно, чисто теоретическую конструкцию, т.к. изготовить ее в любительских
условиях просто невозможно. Кроме того, вместо обещанного автором звучания она будет иметь плохие
параметры, т.к. внутренний демпфер будет увеличивать путь, искривлять и препятствовать свободному
движению звуковых волн между диффузорами. Увеличение пути движения звуковой волны от внутреннего
диффузора к внешнему может привести к ощутимым фазовым сдвигам даже на низких частотах, что приведет к
искажению АЧХ.

Автор Синецкий Б. в статье «Две конструкции АС» («Радиоаматор» 1/2000, рис.3) сдвоил разнотипные головки,
что недопустимо, а также нерационально выделил большой объем для широкополосной головки. Грамотной и
оригинальной является конструкция АС со сдвоенной головкой радиолюбителя Гурина С., приведенная в статье
«Акустическое оформление громкоговорителя» («Радио» 4/1991).
Большинство авторов не приводят параметров, расчетов ящиков АС, сравнительных характеристик и хотя бы
простых измерений АЧХ через микрофон в реальных условиях, т.е. в помещениях, где АС будет
использоваться. В этом есть и объективная причина - отсутствие современных научно-популярных изданий по
акустике и дефицит ранее изданной фундаментальной литературы по электродинамическим головкам и АС. В
основном радиолюбители добиваются результатов путем экспериментов, что довольно накладно, т.к.
изготовление любой АС очень трудоемкий процесс.
Прежде чем перейти к особенностям конструирования АС со сдвоенными головками необходимо привести
анализ физических процессов, происходящих в сдвоенных головках и влияющих на их основные параметры.
Физические процессы в головках, сдвоенных по типам «диффузор к диффузору» и «диффузор за диффузором»
одинаковы. Разница между этими типами состоит в качестве воспроизведения звуковых сигналов, о чем будет
описано ниже.
Диффузоры сдвоенных головок связаны между собой объемом воздуха, заключенного между ними. Этот объем
должен быть герметизирован во избежание нежелательных явлений . Оба диффузора при воспроизведении
звукового сигнала движутся синфазно, т.е. либо оба наружу, либо оба внутрь ящика АС.
Диффузор наружной головки излучает звуковые волны во внешнее воздушное пространство, а диффузор
внутренней головки, двигаясь наружу, сжимает воздух между диффузорами, помогая наружному преодолевать
сопротивление воздуха внешнего пространства и совершать большую амплитуду по сравнению с такой же
одиночной головкой, при том же токе звуковой катушки и в аналогичных условиях. Двигаясь в обратном
направлении, диффузор внутренней головки разрежает воздух между диффузорами и сжимает воздух внутри
ящика, помогая наружному диффузору совершать большую амплитуду в обратном направлении, т.е. диффузор
внешней головки как бы «имеет дело» с ящиком большего объема, чем фактический. Этим объясняется
реализация мощности, подводимой к внутренней головке, которая не излучает звуковые сигналы во внешнее
пространство, а возбуждает звуковые волны в объеме воздуха, заключенного межу диффузорами, которые
должны быть синфазными с колебаниями внешнего диффузора. Идеально синфазными они быть не могут, т.к.
звуковые волны от внутреннего диффузора к внешнему проходят какое-то расстояние, поэтому сдвиг фаз
неизбежен. По этой причине сдвоенные головки могут работать только в том диапазоне частот, в котором
длины звуковых волн не соизмеримы с расстоянием между их диффузорами, т.е. только в низкочастотном
диапазоне звукового спектра частот.

Например, для верхней частоты НЧ диапазона 150 Гц сдвиг фаз между колебаниями диффузоров сдвоенных
головок типа 6ГД-2 составит 0,022 длины волны, а на более низких частотах сдвиг фаз будет еще меньше, что
практически не внесет никаких искажений.
Для верхней частоты СЧ диапазона 5 кГц сдвиг фаз между колебаниями диффузоров сдвоенных головок типа
ЗГД-1 составит 0,43 длины волны, а это значит, что звуковая волна от внутреннего диффузора к внешнему
придет практически в противофазе и создаст полный провал АЧХ на этой частоте. Это и является той
причиной, из-за которой нельзя сдваивать СЧ головки.
По этой же причине при сдваивании широкополосных головок по типу «диффузор за диффузором» для
воспроизведения всего диапазона частот сдвоенной головкой необходимо звуковую катушку внутренней
головки заблокировать от воздействия средних и высоких частот . Схемы параллельного и
последовательного подключения головок показаны на рис.3. При этом эффект сдвоенной головки типа
«диффузор за диффузором» будет проявляться только в НЧ диапазоне, а остальные частоты будут
воспроизводиться только внешней головкой. Естественно, АС со сдвоенными широкополосными головками не
могут быть высококачественными, но более качественными, чем в обычном исполнении.

Для высококачественных АС рекомендуется сдваивать головки по типу «диффузор к диффузору» и только для

Воспроизведения низких частот. Этот вариант эффективно подавляет четные гармоники, которые вызывают
ощутимые нелинейные искажения, особенно вторая гармоника, как самая большая по амплитуде.
Нелинейные искажения обычных электродинамических головок заложены в их технологии производства,
традиционных конструкциях магнитных систем, обладающих несимметричным и неравномерным
распределением магнитной индукции в магнитном воздушном зазоре , несимметричной конической формой
диффузоров, обладающих «парашютным эффектом сопротивления воздуху», несимметричном размещении
звуковых катушек в магнитном зазоре и нелинейной гибкости подвесов подвижных систем . Для одиночной
головки распределение магнитной индукции в воздушном зазоре магнитной системы несимметрично (рис.4,а).
В сдвоенной головке типа «диффузор к диффузору»:
результирующее распределение магнитной индукции в воздушном зазоре эквивалентной магнитной системы
становится симметричным (кривая Всг на рис.4,6);
нелинейность гибкости подвесов подвижных систем частично компенсируется;
результирующая форма диффузора становится симметричной;

несимметричное расположе-1 ние звуковых катушек в магнитных воздушных зазорах! устраняется путем
подбора экземпляров головок с одинаковой несимметричностью.
В сдвоенной головке типа «диффузор за диффузором» устраняется только несимметричное расположение
звуковых катушек в воздушных магнитных зазорах путем подбора экземпляров головок с противоположной
несимметричностью .
Номинальная мощность электродинамической головки
это наибольшая мощность, при которой параметры головки соответствуют паспортным данным, а
максимальная мощность
это наибольшая мощность, при которой головка может длительно работать без повреждений. Эти мощности у
сдвоенной головки любого типа в два раза больше, чем у аналогичной одиночной головки.
Электрическое сопротивление электродинамической головки представляет собой отношение напряжения к
электрическому току звуковой катушки. Эта величина комплексная, которая зависит от частоты звукового
сигнала и достигает максимума на частоте основного резонанса . В заводских паспортах приводится
номинальное электрическое сопротивление. У сдвоенных головок любого типа при последовательном
соединении звуковых катушек сопротивление в два раза больше, а при параллельном - в два раза меньше, чем у
аналогичной одиночной головки.
Амплитудно-частотная характеристика (АЧХ) электродинамической головки представляет собой зависимость
звукового давления от частоты воспроизводимого сигнала при неизменной подводимой мощности к звуковой
катушке. Все выпускаемые до настоящего времени головки имеют неравномерные АЧХ , причем АЧХ разных
экземпляров одного итого же типа головок имеютразную неравномерность и несколько отличные частоты
основного резонанса подвижных систем. В сдвоенных головках пики и провалы в НЧ диапазоне частично
компенсируются, и АЧХ получается более сглаженной, а в СЧ и ВЧ диапазонах сдвоенные головки не работают
по указанным выше причинам .
Среднее стандартное звуковое давление электродинамической головки представляет собой среднеквадратичное
значение звуковых давлений в ее полосе частот на расстоянии 1 м при подводимой мощности 0,1 Вт [ 1 ] и
зависит от мощности и КПД. Динамические головки одной и той же мощности, отличающиеся диаметром
диффузоров, магнитной индукцией в воздушных магнитных зазорах, массой подвижных систем и гибкостью
подвесов подвижных систем отличаются КПД и создают разные звуковые давления.
Коэффициент полезного действия (КПД) электродинамической головки зависит от параметров ее
конструктивных элементов. Наибольшее звуковое давление (громкость) создают головки с наибольшим, легким
диффузором и более мощной магнитной системой в сравнении с другими головками такой же мощности.
Однако такие головки требуют большего объема ящика АС, который, как будет показано ниже, прямо
пропорционален эффективной площади диффузора, гибкости подвеса подвижной системы и обратно
пропорционален массе подвижной системы. В сдвоенной головке эффективная площадь диффузора и гибкость
подвеса подвижной системы в два раза меньше, масса подвижной системы в два раза больше, чем у двух
одиночных головок (в расчетах объема ящика АС масса каждой головки учитывается отдельно).
В связи с этим КПД сдвоенной головки уменьшается в 1,41 раз, однако это окупается снижением всех видов
искажений,
нижней граничной частоты воспроизводимого диапазона и объема ящика АС, который в четыре раза меньше,
чем в традиционном варианте :
Vэ.сг = (Vэ.1+Vэ.2)/4 где
Vэ.сг - эквивалентный объем сдвоенной головки;
Vэ.1 + Vэ.2 - эквивалентные объемы одиночных головок.
Частота основного резонанса электродинамической головки, содержащей подвижную систему, обладающую
массой и гибкостью, представляет собой механическую резонансную систему. Частота основного резонанса
определяется максимальной амплитудой колебаний диффузора при одной и той же мощности [ 1 ].
Частота основного резонанса при сдваивании головок не меняется. Объем ящика АС определяется из
зависимости частоты основного резонанса головки от его объема. При установке любой головки в ящик
закрытого типа частота основного резонанса повышается и тем больше, чем меньше объем ящика. Основным
параметром ящика является гибкость внутреннего объема воздуха, которая прямо пропорциональна его объему
и обратно пропорциональна эффективному диаметру диффузора . Гибкость воздуха в большей степени
зависит от диметра диффузора, чем от объема ящика, поэтому уменьшение диаметра диффузора сдвоенной
головки относительно двух одиночных существенно повышает ее. Эффективный диаметр диффузора сдвоенной
головки меньше в 1,41 раз по сравнению с двумя одиночными головками.
Обычно для расчета объема ящика АС применяют проверочный ящик, но это не всегда удобно и требует
дополнительных затрат труда и материалов. Проще, исходя из параметров головок, подлежащих сдваиванию, и
желаемого результата задать новую частоту основного резонанса и рассчитать его объем по известной методике
. Если ящик окажется больше желаемого, тогда придется выбрать несколько выше частоту основного
резонанса и пересчитать объем ящика. По крайней мере, это менее трудоемко, чем изготовление проверочного
ящика. В заключение следует отметить, что все известные методики расчетов АС пригодны для
конструирования АС со сдвоенными головками всех типов (открытый ящик, фазоинвертор, лабиринт, с
рупором, ПАС и т.п.). Для более рационального использования объема ящика АС рекомендуются варианты
установки сдвоенных головок, показанные на рис.5.


Выходные отверстия могут быть круглыми или прямоугольными, закрытыми декоративными решетками. В
качестве материала для ящиков рекомендуется применять ДСП, которая более доступна и не издает призвуков
как фанера или доска.
Литература
1. Эфрусси М. Громкоговорители и их применение. М. «Энергия», 1976.
2. Журенков А. Сдвоенные динамические головки // Радио. - 1979. -№4.
3. Жбанов В. О громкоговорителях со сдвоенными головками // Радио. - 1983. - №2.
4. Жбанов В. Пути уменьшения габаритов акустических систем // Радио. - 1987. - №2.
5. Карлаш В. Любительские стереоконструкции. - К.: Техника, 1983.
6. Алдошина И., Войшвилло А. Высококачественные акустические системы и излучатели. -М.: Радио и связь,
1985.